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The electroweak scheme is wholly recast, in the framework of a relativistic quantum field
formalism being a covariant fermion–antifermion extension of the usual one for massive
spin- 1

2 point fermions. The new formalism is able to reread the “maximal P -violation”
effect in a way restoring P and C symmetries themselves: it provides a natural “chiral
field” approach, which gives evidence of the existence of a pseudoscalar (extra) charge
variety anticommuting with the scalar (ordinary) one and just underlying the “maximally
P -violating” phenomenology. Its zero-mass limit leads to a strict “chiral” particle
theory, which remodels any massless spin- 1

2 fermion and corresponding antifermion as
two mere pseudoscalar-charge eigenstates being the simple mirror images of each other.
On such a basis, the (zero-mass) electroweak primary fermions are all redefined to be
(only left-handed) “chiral” particles (with right-handed complements just standing for
their antiparticles) and to carry at most scalar charges subjected as yet to a maximal
uncertainty in sign: it is only by acquiring mass, and by gaining an extra helicity
freedom degree, that they now may also manifest themselves as “Dirac” particles, with
sharp scalar-charge eigenvalues. The fermion-mass appearance is thus made herein
a dynamical condition strictly necessary to obtain actual superselected scalar-charge
(and first, electric-charge) eigenstates. A pure “internal” mass-generating mechanism,
relying only on would-be-Goldstone bosons (even to yield fermion masses) and no
longer including an “external” Higgs contribution, is adopted accordingly. This is
shown to be a self-consistent mechanism, which still maintains both renormalizability
and unitarity. It involves a P -breaking in the neutral-weak-current sector (due to the
Weinberg mixing) while it leaves the charged-current couplings truly P -invariant even
in the presence of a (standardly parametrized) CP-violation.

KEY WORDS: origin of “maximally parity-violating” phenomenology.

1. INTRODUCTION

Recently a new theoretic approach to the electroweak scheme (Glashow,
1961; Salam, 1968; Weinberg, 1967) has been suggested, which leads indeed
to a spontaneous prediction of the “maximal parity-violation” effect (Ambler
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et al., 1957; Lee and Yang, 1956), without need any more (Ross, 1993; Narlikar
and Padmanabhan, 1986) of ad hoc inputs such as the “V − A” prescription
(Feynman and Gell-Mann, 1958; Marshak and Sudarshan, 1958; Sakurai, 1958)
and the neutrino two-component model (Landau, 1957; Lee and Yang, 1957;
Salam, 1957; Weyl, 1929). It starts from a strictly covariant fermion–antifermion
generalization (Ziino, 1996) of the usual quantum field formalism for nonzero-
mass fermions; and it has been applied, as a first step, to the leptonic sector
(Ziino, 2000).

The generalized basic formalism just mentioned can naturally deal not only
with Dirac fields, as eigenfields of a scalar (ordinary) charge variety, but also with
true “chiral fields,” as eigenfields of a pseudoscalar (extra) charge variety (the
term “charge” is here used, of course, in a broad sense, to signify any additive in-
ternal quantum number). The mutual property peculiar to such varieties of charges
is the fact that they anticommute. In this enlarged framework, one may define,
on the same footing, both a covariant pair of “scalar-charge conjugated” Dirac
fields and a covariant pair of “pseudoscalar-charge conjugated” chiral fields, and
one may globally think of a dual (either “Dirac” or “chiral”) massive fermion–
antifermion model, characterized by the actual coexistence of both (scalar and
pseudoscalar) kinds of charges and by the corresponding dynamical alternation
of two distinct pairs of superselected charge-conjugated eigenstates. A model like
this, formally supported by the replacement of the (ad hoc) Dirac-field “V − A”
current with a (natural) chiral-field “V ” current, can not only account for the
“maximally P -violating” phenomenology, but even recover (paradoxically) P

and C individual symmetries: it enables one to reinterpret the well-known CP
mirror symmetry of the “V − A” formalism as just a P mirror symmetry between
fermions and antifermions in their alternate showing as net pseudoscalar-charge,
rather than scalar-charge, conjugated eigenstates. The extreme consequences of
such a view can be drawn by taking the zero-mass limit: thus, one is automat-
ically left with a pure and simple “chiral” fermion–antifermion model, which
intrinsically redefines whatever massless spin- 1

2 point particle and its antiparticle
as two permanent (left- and right-handed) pseudoscalar-charge eigenstates, each
just coinciding with the ordinary (merely helicity-conjugate) mirror image of the
other.

The present paper tries to extend the new approach to the whole electroweak
scheme (including the quark sector). The overall formulation here proposed (con-
taining some ameliorations and adjustments, as compared with the previous one
for the only leptonic sector) gives also a much more careful account of the far-
reaching effects on the Higgs-boson question (Ziino, 2003). For the paper to be
made as self-contained as possible, the next three sections are just devoted to a
review of the underlying formalism.
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2. NATURAL THEORETICAL GROUNDS FOR A “MAXIMALLY
P-VIOLATING” PHENOMENOLOGY, AND A NEW FORMAL
READING OF IT WITH BOTH P AND C SYMMETRIES
PARADOXICALLY RECOVERED

It is well-known that the Dirac quantum field formalism cannot provide a
one-particle relativistic description: the associated Fock space is necessarily the
sum of two pure positive-energy Fock spaces – referring (in Dirac’s language)
to “particles” and “holes” respectively – which are taken into each other by a
suitable operation of “particle”⇀↽“hole” conjugation. It is also well-known that
a (manifestly covariant) one-particle description may all the same be restored,
once the Stüeckelberg–Feynman general approach to the negative-energy problem
is adopted (Aitchison and Hey, 1984; Feynman, 1949; Stüeckelberg, 1948): the
“hole” motion (forwards in time) can then be reread as a negative-energy “particle”
motion, backwards in time, and the Fock space above can likewise be recast as
a single one for “particles” only, with energies now covariantly running over
the entire spectrum of positive and negative eigenvalues. Thanks to this improved
view (valid for both fermions and bosons) the “particle–hole” language has clearly
lost its original motivations; yet, the use of such a language may still turn out
convenient, if one wants to make somehow a distinction between a “fermion”
picture (in which, i.e., one has “particle” = fermion and “hole” = antifermion) and
an “antifermion” picture (in which, conversely, one has “particle” = antifermion
and “hole” = fermion).

Let F◦ denote the above (manifestly covariant) Stüeckelberg–Feynman Fock
space, and let it stand in particular for a “fermion” Fock space (where, i.e.,
“particle” = fermion). This definition of F◦ might lead one to wonder whether
a covariant charge-conjugation operation can be introduced too, which may be
able to turn F◦ into another space being an “antifermion” Fock space (where, i.e.,
“particle” = antifermion). Such an operation should have the effect of transforming
a fermion taken in its whole (positive- and negative-energy) spectrum, into the
corresponding (positive- and negative-energy) antifermion; it should then be, in
principle, not just the same as the “particle” ⇀↽ “hole” conjugation (which, on
the contrary, is a mere noncovariant operation interchanging positive-definite-
energy objects). The trouble is, however, that F◦ can itself be reinterpreted as an
“antifermion” Fock space, since in the Stüeckelberg–Feynman view a complete
set of F◦ kets (bras) for fermions will clearly amount to a complete set of F◦

bras (kets) for antifermions. So, at first sight, trying to define a covariant charge-
conjugation operation would seem to be a trivial matter, as we cannot think
of any further Fock space being the “covariant charge-conjugate” of F◦. This
just corresponds to the fact that, in a symmetrized “particle”–“hole” standard
description, one may indifferently put either “particle” = fermion (and “hole’ =
antifermion) or “particle” = antifermion (and “hole” = fermion).
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Actually, the question can be set anew with the aid of a careful re-examination
of the Stüeckelberg–Feynman approach from a classical viewpoint. Let −pµ =
m(−uµ) (µ = 0, 1, 2, 3; metric: + − −−) be the four-momentum of a negative-
energy particle of proper (i.e., covariant) mass m (> 0) and four-velocity −uµ =
−dxµ/ds (−dx0 < 0). Since the equivalent positive-energy antiparticle, with
four-momentum pµ, is just moving along the same world-line in the opposite
direction, ds → −ds, one has that the “slope” −uµ of that world-line will be left
unchanged by the Stüeckelberg–Feynman procedure, (−dxµ)/ds = dxµ/(−ds).
Strictly speaking, it should therefore be claimed that in replacing −pµ (for the
particle) with pµ (for the antiparticle) a pure change of the proper-mass sign is
involved, −pµ → pµ =⇒ m → −m. This does not seem to be a very surprising
result: due to the quadratic character of the energy–momentum relation E2 =
p2 + m2 (c = 1), we may clearly associate both energy roots ±E with the same
(positive) proper mass m, but we may just as well associate both proper-mass roots
±m with the same (positive) energy E. The fact is that the relative sign of energy
and proper mass does depend on either sign of the four-velocity time component
±u0. So, the assignment of a proper mass −m to the antiparticle cannot even be
said to clash with the CPT theorem: what rigorously follows from the validity
of CPT symmetry is that a real particle and its antiparticle must have identical
rest energies, which does only mean that m2, and not m itself, must be equal for
them both. If these arguments are in particular applied to fermions, it may then be
stated that a free Dirac fermion and the associated antifermion can covariantly be
distinguished by the (opposite) signs of their proper masses. This just enables one
to think of a nontrivial “covariant charge-conjugation” operation for free fermions:
it should coincide with the pure internal operation of proper-mass reversal (Costa
de Beauregard, 1982, 1984; Recami and Ziino, 1976; Sakurai, 1958; Tiomno,
1955) (leaving both four-momentum and helicity unvaried). It is evident, on the
other hand, that the proper-mass sign in the Dirac equation is immaterial and has
no observable kinematical effects. The only problem is that the Fock space F◦

should clearly be left structured in such a way that it may still equally refer to
(positive- and negative-energy) fermions or antifermions. This requirement can
be maintained, only if the (positive- and negative-energy) F◦ states are assumed
to depend merely on |m| (just in line with the fact that they should always be
completely specified by four-momentum and helicity). One is thus led to conclude
that the strict Fock space F◦ does not appear to be adequate for allowing an
explicit definition of proper-mass reversal as a “covariant charge-conjugation”
operation. What would be needed is some “enlarged” Fock space which may be
able as well to make a manifest formal distinction between a “fermion” (positive-
and negative-energy) covariant Dirac picture, marked by the m2 root +m, and an
“antifermion” one, marked by the m2 root −m. In other words, we should find
the way to double F◦, by giving it some “label” that may unambiguously tell us
which of the two alternative complete pictures above is being considered.
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To this aim, it turns out appropriate to introduce two (orthogonal) unit internal
state-vectors, |f 〉 and | f̄ 〉, defined as eigenvectors of a (one-particle) proper-mass
operator, M , with eigenvalues +m and −m :

M|f 〉 = +m | f 〉, M| f̄ 〉 = −m | f̄ 〉. (1)

Let Sin be the two-dimensional (internal) space which is spanned by such
eigenvectors. We may then say that a “dressed” Fock space F can be built from
the “bare” one F◦, being such that

F = F◦ ⊗ Sin. (2)

As an effect of a “dressing” procedure like this, the original complete set
of F◦ kets (bras) has indeed been turned into a “Dirac fermion” set, covariantly
labelled by |f 〉 ( 〈f | ), plus a “Dirac antifermion” one, covariantly labelled by
| f̄ 〉 (〈f̄ | ), with an energy range still including, in either case, both positive and
negative eigenvalues. Evidently, F will contain two distinct (“fermionic” and
“antifermionic”) vacuum states, |0〉|f 〉 and |0〉| f̄ 〉, instead of a single (“bare”)
covariant fermion–antifermion vacuum state, |0〉 ; this, of course, does not prevent
us from constructing suitable “undressing” annihilation operators (multiplied by
〈f | or 〈f̄ |) and corresponding “dressing” creation operators (multiplied by |f 〉
or | f̄ 〉) which may connect F with the (one-dimensional) space spanned by
|0〉 (note, however, that the strict annihilation and creation operators, subject to
standard anticommutation rules, are always left those defined in the strict Fock
space F◦). Going over to F , we may rigorously think of a “covariant charge-
conjugation” as being accomplished by a unitary and Hermitian operator, Ccov,
which properly acts within Sin and trivially behaves (just like an identity operator)
within F◦:

Ccov|f 〉 = | f̄ 〉, Ccov| f̄ 〉 = |f 〉 (
C−1

cov = C†
cov = Ccov

)
. (3)

We can also see that Ccov anticommutes with M , in line with the fact that it
primarily works as a proper-mass conjugation operator. By the way, the choice
of a self-explanatory symbol like Ccov is just aimed at avoiding that “covariant
charge-conjugation” may be confused with the usual (noncovariant) “particle” ⇀↽
“hole” conjugation: the latter one will be still denoted by the ordinary symbol C.

The Fock-space doubling brought in by (2) has a meaning that can be con-
veniently expressed in the “particle–hole” language: it leads to a generalized
description which distinctly includes both a fermionic covariant Dirac picture,
with “particle” = fermion and “hole” = antifermion, and an (equally admissible)
antifermionic one, with “particle” = antifermion and “hole” = fermion. These
pictures − which may be said to be “covariantly conjugated” to each other – are
just distinguished by either sign of proper mass. So, a pair of Dirac free-field
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equations like

iγ µ∂µψf = +m ψf , iγ µ∂µψf̄ = −m ψf̄ (4)

(h = c = 1; γ 0† = γ 0, γ k† = −γ k, k = 1, 2, 3) is to be associated with them,
where ψf̄ should consistently stand for the proper-mass conjugate counterpart
of ψf . Let uf (p) and uf̄ (p) be accordingly two positive-energy eigenspinors
satisfying the equations

γ µpµuf = +m uf , γ µpµuf̄ = −m uf̄ . (5)

For p = 0, one clearly obtains

γ 0 (+m) uf (0) = E uf (0) , γ 0 (−m) uf̄ (0) = E uf̄ (0), (6)

where E (> 0) is the related energy eigenvalue, such that E = m. By making this
substitution, it is immediate then to see that

γ 0 uf (0) = uf (0), γ 0 uf̄ (0) = −uf̄ (0). (7)

One therefore has that due to the discordant signs of the associated proper
masses, the opposite-intrinsic-parity requirement for the eigenspinors uf (p) and
uf̄ (p) can be automatically fulfilled by the application of one and the same parity
matrix (say, γ 0) to them both. This is not the case of two mere “particle” and
“hole” conjugated eigenspinors, which are coincident solutions of just either one
of Eqs. (5) and then require two discordant parity representations (say, γ 0 and
−γ 0, respectively) for them to be assigned opposite intrinsic parities. As both of
the field equations (4) are in turn compatible with the “bare” Fock space F◦, we
may build on the whole a double-structured, “undressing” field operator, �(x)
(x ≡ xµ), which just reduces to ψf (x) or ψf̄ (x) according to whether applied to
F◦ states that are coupled to |f 〉 or | f̄ 〉 : it looks like

�(x) = ψf (x) 〈f | + ψf̄ (x) 〈 f̄ |, (8)

and obeys the generalized Dirac equation

iγ µ∂µ�(x) = �(x)M, (9)

M being the proper-mass operator defined by (1). This can be strictly said to be a
covariant fermion–antifermion field. Besides being still a Lorentz four-spinor, it
is also a (bra) vector in the internal space Sin, with ψf (x) and ψf̄ (x) correspond-
ingly acting as its components relative to the orthonormal basis

(〈f |, 〈 f̄ |). Let
ψf (x) and ψf̄ (x) be in particular called the “Dirac” (fermion and antifermion)
components of �(x) in Sin, the former annihilating (either positive or negative
energy) “Dirac” fermion states covariantly marked by |f 〉, and the latter annihi-
lating (either positive or negative energy) “Dirac” antifermion states covariantly
marked by | f̄ 〉. If we take account of (3), we can also define the Ccov counterpart
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of �(x) as

�(Ccov)(x) ≡ �(x)Ccov = ψf (x) 〈f̄ | + ψf̄ (x) 〈f | (10)

and introduce the adjoints of � and �(Ccov), such that

�̄(x) = |f 〉 ψ̄f (x) + |f̄ 〉 ψ̄f̄ (x) (11)

(ψ̄ = ψ†γ 0) and �̄(Ccov)(x) ≡ C
†
cov�̄(x). From a comparison, e.g., of (10) with

(8), it is immediate to realize that applying Ccov to both �(x) and �̄(x) can
equivalently be implemented by prescribing

Ccov : ψf (x) ⇀↽ ψf̄ (x), ψ̄f (x) ⇀↽ ψ̄f̄ (x). (12)

This just leads us to state that ψf̄ (x) should be covariantly obtained from
ψf (x) by simply demanding the proper-mass reversal m → −m in the Dirac
equation obeyed by ψf (x). So, after all, one may write (apart from a phase factor):

ψf̄ (x) = γ 5ψf (x), ψ̄f̄ (x) = −ψ̄f (x)γ 5 (13)

(ψ̄ = ψ†γ 0; γ 5 ≡ i γ 0 γ 1 γ 2 γ 3). Such an outcome clearly calls for some ex-
planatory comments. In view of (13)—and in accordance with the fact that Ccov

is essentially defined in Sin—one has that the Fourier expansions of ψf (x) and
ψf̄ (x) will share a unique type of “particle” annihilation operators, say, a(p, σ ),
as well as a unique type of “hole” creation operators, say, ah†(p, σ ) (σ being the
helicity variable). This appears to be admissible, for the simple reason that ψf (x)
and ψf̄ (x) belong to two alternative, self-contained pictures – marked by |f 〉
and | f̄ 〉, respectively – each being as able as the other to describe the creation
or annihilation of a “particle”–“hole” pair (even though with an interchange of the
actual physical objects referred to as “particle” and “hole”): according to whether
ψf (x) 〈f | or ψf̄ (x) 〈 f̄ | is in turn involved, the same “particle” annihilation op-
erator, a (“hole” creation operator, ah†) may in turn be assumed to annihilate a
fermion or an antifermion (create an antifermion or a fermion) with no possibility
for the two assumptions to interfere. Such an “ambivalence” can be made more
explicit by setting

a(p, σ ) = a(p, σ ; |m|), ah†(p, σ ) = ah†(p, σ ; |m|) (14)

for both ψf (x) and ψf̄ (x). Of course, ψf̄ (x) has nothing to do with the charge-
conjugate field that can (noncovariantly) be obtained from ψf (x) by applying the
usual operation of “particle” ⇀↽ “hole” conjugation (i.e., a ⇀↽ ah, ah† ⇀↽ a†): this
latter charge-conjugate field type is independently definable both for ψf (x) and
ψf̄ (x) itself, and can be encountered just within either single picture above, as
a result of normal ordering. Also, note that due to the covariant eigenvalues m

and −m marking the pictures in question, an unambiguous distinction between
“particle” and “hole” now follows the choice of either picture: for instance, if
the “fermion” Dirac picture (marked by m) is adopted, then the “hole” label is
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automatically left assigned to the antifermion, and no ambiguity can arise even
when normal ordering is applied. Allowing for (13), one may compactly write

�(Ccov)(x) = γ 5�(x), �̄(Ccov)(x) = −�̄(x)γ 5. (15)

These equations strictly define the role now played by γ 5 as the γ -matrix
representing Ccov. Note, on the other hand, that from the requirement of invariance
of (9) under space inversion xµ → xµ, one may still infer the P mirror counterparts
of � and �̄ as those fields looking (apart from phase factors) like

�(P )(xµ) = γ 0�(xµ), �̄(P )(xµ) = �̄(xµ)γ 0. (16)

To see the real advantages of this (apparently redundant) formalism, a better
insight into the properties of the internal space Sin is needed. Consider the new Sin

basis obtained from the “Dirac” one
( |f 〉, | f̄ 〉) by carrying out the rotation

|f 〉 = 1√
2

( |f ch〉 + |f̄ ch〉 ), |f̄ 〉 = 1√
2

(−|f ch〉 + |f̄ ch〉 ). (17)

The peculiar feature of such a basis is that Ccov is made diagonal in it:

Ccov|f ch〉 = −|f ch〉, Ccov|f̄ ch〉 = |f̄ ch〉. (18)

In view of (15), the Ccov eigenvalues may just be said to afford the “chiralities”
of the associated (either positive- or negative-energy) Fock states covariantly
labelled by |f ch〉 and |f̄ ch〉. A similar (unitary and Hermitian) operator, say,
Pin, can clearly be introduced in Sin, which, vice versa, is diagonal in the basis
( |f 〉, | f̄ 〉 ) and has the property of interchanging |f ch〉 and |f̄ ch〉:

Pin|f ch〉 = |f̄ ch〉, Pin|f̄ ch〉 = |f ch〉 (
P −1

in = P †
in = Pin

)
. (19)

Since

Pin|f 〉 = |f 〉, Pin|f̄ 〉 = −|f̄ 〉, (20)

it is appropriate to interpret Pin (apart from a phase constant η = ±1) as an
“internal parity” covariant operator. As far as the only positive-energy spectrum is
concerned, the Pin eigenvalues drawn from (20) may well be assumed to reproduce
the intrinsic parities (i.e., the zero-momentum P eigenvalues) of the Dirac fermion
and antifermion. Such a coincidence can no longer be pursued when also the
negative-energy spectrum is included, since the intrinsic parity of a spin- 1

2 particle
(unlike the “internal parity” of it) is not a strict covariant eigenvalue and changes
sign on passing to negative energies. The fact is that parity P is now to be taken as
an operator defined in the whole Fock space (2), with an “external” representation,
Pex, properly acting on F◦ vectors, and an “internal” one, Pin, properly acting on
Sin vectors: one should write, e.g.,

�(P )(xµ) = P †
exψf (xµ)Pex 〈f |Pin + P †

exψf̄ (xµ)Pex 〈 f̄ |Pin, (21)
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where a comparison with Eqs. (16) and (20) shows (in full accordance with the
anticommutation relation γ 0γ 5 + γ 5γ 0 = 0) that

P †
exψf (xµ)Pex = γ 0ψf (xµ), P †

exψf̄ (xµ)Pex = −γ 0ψf̄ (xµ). (22)

On passing to the new basis ( |f ch〉, |f̄ ch〉 ), which may be called the “chiral”
basis in Sin, the field �(x) and its adjoint will read

�(x) = χf (x) 〈f ch| + χf̄ (x) 〈f̄ ch|, �̄(x) = |f ch〉 χ̄f (x) + |f̄ ch〉 χ̄f̄

(χ̄ = χ†γ 0) with (23)

χf (x) ≡ 1√
2

(1 − γ 5)ψf (x), χf̄ (x) ≡ 1√
2

(1 + γ 5)ψf̄ (x) (24)

and

ψf = 1√
2

(χf + χf̄ ), ψf̄ = 1√
2

(−χf + χf̄ ), (25)

and with (25) being identically valid also for ψ̄f , ψ̄f̄ and χ̄f , χ̄f̄ . So, in the
enlarged framework provided by (2), two (massive) “chiral fields,” χf and χf̄ ,
can spontaneously be introduced, just having opposite chiralities and being on
the same footing as the two “covariant charge-conjugated” Dirac fields ψf and
ψf̄ . They may themselves be said to be “covariantly conjugated” to each other,
but with Pin taking the place of Ccov : if (19) is taken into account, then, by an
inspection of (23), it is immediate to see that applying Pin to both � and �̄ can
equivalently be accomplished by prescribing

Pin : χf (x) ⇀↽ χf̄ (x), χ̄f (x) ⇀↽ χ̄f̄ (x). (26)

It appears evident, on the other hand, that Ccov is conversely acting as if

Ccov :

{
χf (x) → −χf (x), χf̄ (x) → χf̄ (x)

χ̄f (x) → −χ̄f (x), χ̄f̄ (x) → χ̄f̄ (x).
(27)

All this a fortiori makes sense in the zero-mass limit, which clearly reduces
both (fermion and antifermion) Dirac fields ψf and ψf̄ , as given by (25), to
simple mixtures of a pure left-handed fermion and a pure right-handed antifermion
(chiral) field (Barut and Ziino, 1993) (a detailed analysis of such spontaneous
two-component field models for massless spin- 1

2 particles and antiparticles will
be made in Section 4). The general meaning of (26) can be gathered with the help
of (13): if we take, e.g., the intrinsic mirror counterparts of χf and χf̄ , defined as
their respective chirality-conjugate versions

ξf (x) ≡ 1√
2

(1 + γ 5)ψf (x), ξf̄ (x) ≡ 1√
2

(1 − γ 5)ψf̄ (x), (28)
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we see that

ξf (x) = χf̄ (x), ξf̄ (x) = −χf (x). (29)

Thus, no further independent pair of chiral fields can be obtained by chirality
inversion; and, in view of (29), it may be argued that χf (χ̄f ) and χf̄ (χ̄f̄ ) are
themselves merely acting as the intrinsic mirror counterparts of each other.

By virtue of (25), the “maximally P -violating” Dirac-field V − A current
apparently entering into both lepton and quark weak phenomenologies (Halzen and
Martin, 1984) can now find a natural theoretical room in the straightforward form
of a chiral-field V current: using the subscripts a, b to specify the point-fermion
types involved in the current, one obtains

ψ̄bγ
µ(1 − γ 5)ψa ≡ χ̄bγ

µχa. (30)

A similar conclusion could be drawn also for an equivalent V + A current
in terms of the respective “covariant charge-conjugate” Dirac antifermion fields
ψā = γ 5ψa and ψ̄b̄ = −γ 5ψ̄b :

ψ̄b̄γ
µ(1 + γ 5)ψā ≡ χ̄b̄γ

µχā. (31)

So, a pure weakly-interacting point fermion may strictly be referred to as a
“chiral” fermion, on which, in view of (26), Pin itself will play a “covariant charge-
conjugation” role quite similar to the one played by Ccov on a “Dirac” fermion: it
will give rise to a new, equally allowable chiral-particle description (covariantly
conjugated to the starting one) where the original associations “particle” = fermion
and “hole” = antifermion appear to be interchanged. This seems even to lead to a
recovery of P symmetry, as follows from the fact that either in the new covariant
form (30) or (31) the parity matrix γ 0 is to be applied directly to χ and χ̄ , rather
than (as usual) to ψ and ψ̄ :

P : χ (xµ) → γ 0χ (xµ), χ̄ (xµ) → χ̄ (xµ)γ 0. (32)

More precisely, setting – as prescribed by (2) − P = PinPex (= PexPin)
(Pex standing for the “external” parity, properly defined in F◦, and Pin for the
“internal” parity, properly defined in Sin) one can see that the peculiar left–right
spatial asymmetry shown by the pure weak couplings is here accounted for as
a mere (maximal) Pex violation, which, suitably combined with a (maximal) Pin

violation, does not prevent P itself from being left, on the whole, a symmetry
operation. A simple comparison of (26) with (32), via Eqs. (29) and (28), reveals
that applying Pex to a chiral-field V current is quite the same as usually applying
P to the corresponding Dirac-field V − A current. If by Pst we denote an operator
just reproducing the “standard” formal way of applying P according to the V − A

scheme, we may then put Pex = Pst and P = PinPst. Of course, as long as only
a current of the (Dirac) type ψ̄γ µψ is taken into account, the effect of P strictly
coincides with the effect of Pst, so that no distinction can yet be made between P
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and Pst : a glance at both (26) and (25) points out that the Pin behavior is irrelevant
to such a current. Quite different is the case of the chiral-field currents (30) and
(31) taken alone, since they, on the contrary, are turned into each other as an effect
of Pin : thus also Pin (and not only Pex) is maximally violated by them, the overall
result being that they may still be singly P -invariant (despite their Pex-violating
character). This ultimately means that applying what is only an “external” parity
operation (as it is usually done) would not exhaust the real effects produced by
space reflection on a pure weakly-interacting fermion system: some “internal”
nontrivial effects (really able to restore ordinary mirror symmetry) would be
indeed neglected, which should involve a yet unexplored, complementary aspect
of the intrinsic nature itself of spin- 1

2 point fermions. The physical contents of
these further effects of space inversion will be made clear in the next section,
where just a dual (either “Dirac” or “chiral”) massive fermion model, generally
based on the coexistence of two anticommuting (scalar and pseudoscalar) charge
varieties, is outlined.

Such a restitution of P symmetry to the “maximally P -violating” phe-
nomenology is consistently supplemented by a parallel restitution of C symmetry,
C being the ordinary (noncovariant) charge conjugation. The key-novelty is af-
forded again by (25), which similarly requires, either for the chiral-field current
(30) or (31), a direct application of C to χ and χ̄ . Using the symbol C also to
denote the associated 4 × 4 unitary matrix, we have, e.g., that applying C to (30)
now means making the substitutions

χa → χ (C)
a = Cχ̃†

a , χ̄b → χ̄
(C)
b = χ̃bC

†γ 0 (33)

where χ̃ stands for the transpose of χ and C is, as usual, such that

C γ̃ µ†C† = −γ µ, C γ̃ 5†C† = −γ 5. (34)

In this way C will also induce chirality inversion besides ordinarily acting
on Dirac fields; which clearly ensures C symmetry to be restored (provided that
normal ordering is applied): as an effect of (33), it will turn out that the “charge
conjugate” of (30) is indeed a V + A (rather than a V − A) “hole” current. Since
(33) generally implies

ψ
(C)
f̄

(x) = −γ 5ψ
(C)
f (x), ψ̄

(C)
f̄

(x) = ψ̄
(C)
f (x)γ 5, (35)

it is immediate to see, by a comparison with (13), that the C operator may now be
written down as C = PinCst (= CstPin) with Cst exactly reproducing the “standard”
formal way of applying C according to the V − A scheme. This is just how C is
to be represented in the “dressed” Fock space (2). Of course, no real distinction
can yet emerge between C and Cst, as far as their effects on a current like ψ̄γ µψ

are concerned: the reason is because by writing ψ → Cψ̃† one may indifferently
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mean not only

1

2
(1 ∓ γ 5)ψ −→ 1

2
(1 ∓ γ 5)Cψ̃†

(with C = Cst as in the usual formalism) but also

1

2
(1 ∓ γ 5)ψ −→ 1

2
C[(1 ∓ γ̃ 5†)ψ̃†] = 1

2
(1 ± γ 5)Cψ̃†

(with C = PinCst as in the new formalism). The Cst and PinCst effects are made
fully distinguishable, on the contrary, just when a single chiral-field current like
(30) or (31) is involved: Cst will act in such a way as to be (maximally) violated,
while PinCst in such a way as to be left a symmetry operation.

Hence, in the enlarged framework here considered, it is only when dealing
with a Dirac-field V current that we may really put P = Pst and C = Cst. Note,
nevertheless, that in this same framework it always results

CP = CstPst = (CP )st (36)

whether a Dirac- or chiral-field V current is individually involved. If it is further
considered that “chiral” fermions would also be manifest Ccov eigenstates which
are taken by Pin into their antifermion counterparts, it may therefore be guessed
that the recovered P mirror symmetry for “chiral” fermions should essentially
amount to CP symmetry itself, with C thus really acting on them just like an
identity. A direct confirmation can be obtained by singly applying C (= PinCst)
and P (= PinPst) to a “dressed” Fock state of the type |1p,σ 〉|f ch〉, with |1p,σ 〉
denoting an usual occupied “particle” (= fermion) state of momentum p and
helicity σ in F◦. The fact is that

C |1p,σ 〉|f ch〉 = ∣∣1(h)
p,σ 〉∣∣f̄ ch〉, P |1p,σ 〉|f ch〉 = |1−p,−σ 〉|f̄ ch〉, (37)

where both transformed “dressed” Fock states are also belonging to a new picture
(marked by |f̄ ch〉 and covariantly conjugated to the starting one) in which by
“particle” the corresponding “chiral” antifermion is meant: so, the occupied “hole”
state |1(h)

p,σ 〉|f̄ ch〉 is nothing but the original fermion state as re-expressed in such
a picture, while the occupied (mirror) “particle” state |1−p,−σ 〉|f̄ ch〉 is rather a
“chiral” antifermion (and no longer a “chiral” fermion) state. As will be shown
in the next section, these can more straightforwardly be seen to correspond to a
C = 1 and a P = CP = (CP )st effect, if an explicit use is made of a symmetrized
“particle–hole” formalism. All that, of course, makes sense, provided that a “Dirac”
and a “chiral” fermion are supposed to embody two mere complementary and
mutually exclusive internal attitudes of one and the same spin- 1

2 point particle.
But which would be the reasons for the coexistence of two such (apparently
incompatible) fermion natures? Answering this question may indeed be decisive
for tracing the origin itself of what is known as the “maximal parity-violation”
effect.
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3. A DUAL – EITHER “DIRAC” OR “CHIRAL” – MODEL
OF A MASSIVE SPIN- 1

2 POINT PARTICLE

An insight into the above results can be gained by introducing two general
one-particle “charge” operators, Q and Qch, the former being diagonal in the
“Dirac” Sin-basis

( |f 〉, | f̄ 〉) (with eigenvalues ±q) and the latter in the “chiral”
Sin-basis

( |f ch〉, | f̄ ch〉) (with eigenvalues ±qch). In view of (3), (18), (19), and
(20), one has

CcovQ = −QCcov, PinQ = QPin (38)

PinQ
ch = −QchPin, CcovQ

ch = QchCcov. (39)

Hence, Q is a scalar quantity anticommuting with Ccov, while Qch is
a pseudoscalar quantity anticommuting with Pin ; so that Ccov and Pin may
strictly be said to stand for a scalar- and a pseudoscalar-charge conjugation
operator, respectively. It may be asserted, moreover, that the “Dirac” inter-
nal states ( |f 〉, | f̄ 〉 ) should typically behave like a net pair of scalar-charge
conjugated eigenstates—see Eqs. (3)—while the “chiral” ones ( |f ch〉, | f̄ ch〉 )
like a net pair of pseudoscalar-charge conjugated eigenstates—see Eqs. (19).
This is to be related to the fact Q and Qch are themselves two anticommuting
operators,

QQch + QchQ = 0, (40)

whose squares clearly satisfy the commutation relations
[
Q2,Qch

] = [
Qch2,Q

] = 0. (41)

Either Q or Qch, if applied (from the right) to the fermion–antifermion field
�(x), is automatically able to superselect that internal representation of �(x)—
either (8) or (23)—which may diagonalize it. Hence it can be argued that the
same massive spin- 1

2 point fermion and related antifermion may both display, in
principle, a dual intrinsic nature as an alternate pair of superselected Q or Qch

eigenstates (Barut, 1972, 1973). If so, then, e.g., the “true” operation of fermion
→ antifermion covariant conjugation should strictly be identified with CcovPin,
although one has that CcovPin is just reducible to Ccov when acting on |f 〉 and to
Pin when acting on |f ch〉:

CcovPin|f 〉 = Ccov|f 〉, CcovPin|f ch〉 = Pin|f ch〉 (42)

(CcovPin = −PinCcov). In the former case the fermion would behave as if it were
a pure scalar-charge (i.e., “Dirac”) particle, while in the latter as if it were a pure
pseudoscalar-charge (i.e., “chiral”) particle. Yet it would be in either (and not only
in the former) case that P and Ccov symmetries can be singly respected (Barut,
1982), the difference being merely that P and Ccov would result to play inter-
changed internal roles on passing from one to the other case. Actually, Eqs. (42)
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show that a “chiral” fermion as compared with a “Dirac” one would conversely
stand for a Ccov (and not an intrinsic P ) eigenstate which instead is turned by
P into the corresponding “chiral” antifermion: in such a case, therefore, P itself
(thanks to Pin) would take the place of Ccov as a “covariant charge-conjugation”
operation.

On the other hand, coming back to the “dressed” representation, C = PinCst,
of the ordinary (noncovariant) charge conjugation C in the new Fock space (2), we
clearly have that the “bare” contribution Cst will take “particle” (“hole”) into “hole”
(“particle”) no matter whether a “Dirac” or “chiral” fermion (antifermion) is being
dealt with. So, according to either case considered, Cst may in turn be said to stand
for the noncovariant analogue of the “covariant charge-conjugation” operations
Ccov and Pin, respectively. What is really peculiar, however, to Cst (as well as to
CP = CstPst) is the noncovariant character itself, which allows it to act in the strict
framework of either single picture with “particle” = fermion (and “hole” = an-
tifermion) or “particle” = antifermion (and “hole” = fermion). This cannot happen
for Ccov (in the “Dirac” case) and for Pin (in the “chiral” case), since a “covariant
charge-conjugation” implies just a change from the former picture (properly in
terms of positive- and negative-energy fermions) to the latter (properly in terms
of positive- and negative-energy antifermions) or vice versa. Such a difference, if
seen from a reversed viewpoint, can fully explain how the P (= PinPst) mirror im-
age of a “chiral” fermion may already amount to a CP mirror image of it: due to the
Pin contribution, applying P to a “chiral” fermion will also signify going over to a
new “particle–hole” picture where one has “particle” = antifermion (rather than
“particle” = fermion) and where a space-inverted “particle” state correspond-
ingly stands for an antifermion (rather than still for a fermion) state. The physical
equivalence thus resulting between the recovered P mirror symmetry and the well-
known CP mirror symmetry can be given a more straightforward (though only
effective) representation by use of a symmetrized “particle–hole” formalism (as
obtained via normal ordering). A formalism like this is no longer strictly covariant
but enables one to evaluate the C and P individual effects even without passing
to a new “particle–hole” picture. To see it, consider also the “hole” version of
transformation (25),

ψ
(h)
f = 1√

2

(
χ

(h)
f + χ

(h)
f̄

)
, ψ

(h)
f̄

= 1√
2

( − χ
(h)
f + χ

(h)
f̄

)
, (43)

where the fields ψ
(h)
f , ψ

(h)
f̄

and χ
(h)
f , χ

(h)
f̄

are obtained from the corresponding
fields ψf ,ψf̄ and χf , χf̄ by simply making (in their Fourier expansions) the
substitutions a → ah, ah† → a†. Take then, e.g., the normally ordered “particle–
hole” chiral-field picture with “particle” = fermion (and “hole” = antifermion):
there will symmetrically enter both the (negative chirality) “particle” field χf and
the (positive chirality) “hole” field χ

(h)
f̄

(along with their adjoints χ̄f and χ̄
(h)
f̄

). It
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follows that the operation

Pin : χf (χ̄f ) −→ χf̄ (χ̄f̄ ), χ
(h)
f̄

(
χ̄

(h)
f̄

) −→ χ
(h)
f

(
χ̄

(h)
f

)
(44)

cannot globally be distinguished from

Cst : χf (χ̄f ) −→ χ
(h)
f

(
χ̄

(h)
f

)
, χ

(h)
f̄

(
χ̄

(h)
f̄

) −→ χf̄ (χ̄f̄ ), (45)

so that Pin itself may equivalently be ascribed an effective behavior like Pin = Cst

(as if it were directly defined in the “bare” Fock space F◦). Analogous, effective
behaviors on F◦ states may be thought of, accordingly, for C (= PinCst) and P

(= PinPst), which just amount to C = 1 and P = CP = CstPst. So, after all, a
“chiral” particle can soundly be said to be a particle looking C-invariant, and this
should indeed be taken as a noncovariant analogue to its apparent being a strict
Ccov (i.e., scalar-charge conjugation) eigenstate.

With the help of both (1) and (20), Eq. (9) can be recast into the more
convenient form

iγ µ∂µ�(x) = |m| �(Pin)(x) (46)

where

�(Pin)(x) ≡ �(x) Pin = ψf (x) 〈f | − ψf̄ (x) 〈f̄ |. (47)

A field equation like (46) is actually derivable from the Hermitian free Lagrangian

L
(
�,�(Pin), �̄, �̄(Pin), . . . ; |m|) = 1

4

[
i
(
�̄γ µ∂µ� + �̄(Pin)γ µ∂µ�(Pin)

) + H.c.
]

−1

2
|m| (�̄�(Pin) + �̄(Pin)�

)
(48)

where �̄(Pin) = Pin�̄. In (48), one has that �,�(Pin), �̄ and �̄(Pin) are single field
variables; by this it is understood that χf and χf̄ are subject from the beginning
to the “chiral condition” (24) (automatically fixing the link between ψf and
ψf̄ ). A glance at (48) shows that L is not only manifestly Pin-invariant, but
also P -invariant, as can be immediately checked by applying the usual effective
prescription

P : ∂µ → ∂µ, γ µ → γ 0γ µγ 0. (49)

This (fully covariant) outcome is independent of the special Sin representation
chosen for the fields �,�(Pin), �̄ and �̄(Pin); so one has that parity invariance
consistently holds even when the chiral Sin representation is adopted. Quite a
similar remark applies to the (substantial) invariance of L under the ordinary
operation of charge conjugation,

� → C�̃†, �† → �̃C†; �(Pin) → C�̃(Pin)†, �(Pin)† → �̃(Pin)C†, (50)
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with the matrix C fulfilling the usual conditions (34).
Global phase invariance of the Lagrangian (48) yields a manifestly Pin-

invariant, conserved free current like

J ≡ Jµ = 1

2

[
�̄γ µ� + �̄(Pin)γ µ�(Pin)

]
. (51)

By use of the closure relation |f 〉〈f | + | f̄ 〉〈 f̄ | = 1 (throughout this paper
the identity operator in Sin is simply denoted by 1 ) such a current can essentially
be reduced to the “bare” form

Jµ = ψ̄f γ µψf = ψ̄f̄ γ µψf̄ = 1

2

[
χ̄f γ µχf + χ̄f̄ γ µχf̄

]
(52)

acting in the strict Fock space F◦. Likewise one has J = J (Ccov), and this corre-
sponds to the fact that (51) is chirality-invariant. The form (52) can be suitably
“dressed” to give the two distinct, scalar- and pseudoscalar-charge, conserved
free currents

J (Q) = QJ = J Q, J (Qch) = QchJ = J Qch, (53)

which act in the whole space (2) and are, according to (38) and (39), such that

CcovJ (Q) = −J (Q)Ccov, PinJ (Q) = J (Q)Pin (54)

PinJ (Qch) = −J (Qch)Pin, Ccov J (Qch) = J (Qch)Ccov. (55)

These can also (more properly) be inferred by exploiting the invariance of (48)
under two individual kinds of global gauge transformations applying to Sin vectors,
such that

� →�eiQα, �̄ →e−iQα�̄ ; �(Pin) →�(Pin)eiQα, �̄(Pin) →e−iQα�̄(Pin) (56)

and

� →�eiQchβ, �̄ →e−iQchβ�̄ ; �(Pin) →�(Pin)eiQchβ, �̄(Pin) →e−iQchβ�̄(Pin),

(57)
respectively (α and β being two constant real angles). In particular, note that the
invariance with respect to the substitutions (57) may hold also for the mass sector
of (48) by virtue of the chiral condition (24). The vector and axial-vector behaviors
of J (Q) and J (Qch) can be explicitly checked as follows:

{
P †J (Q)µ(xν)P = (P †

inQPin)[P †
exJ

µ(xν)Pex] = J (Q)
µ (xν)

P †J (Qch)µ(xν)P = (P †
inQ

chPin)[P †
exJ

µ(xν)Pex] = −J (Qch)
µ (xν).

(58)

The corresponding behaviors of their normally ordered versions under the (ordi-
nary) charge-conjugation C are

C†( : J (Q) :
)
C = −(

: J (Q) :
)

, C†( : J (Qch) :
)
C = (

: J (Qch) :
)
, (59)
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with C = PinCst and

C
†
stQCst = Q, C

†
stQ

ch Cst = Qch, C
†
st(: J :) Cst = −(: J :). (60)

Note, on the other hand, that both (: J (Q) :) and (: J (Qch) :) behave identically
under CP (= CstPst).

As for the scalar-charge current J (Q), the “dressing” one-particle charge
operator relevant to it can be expressed as

Q = Q(q) = qPin = q
(|f 〉〈f | − | f̄ 〉〈 f̄ | ), (61)

q (= ∓|q|) being the given Q eigenvalue associated with |f 〉. Substituting (61)
splits up J (Q) into the sum of two currents which are the “covariant charge-
conjugates” of each other:

J (Q) = q (|f 〉ψ̄f γ µψf 〈f | − | f̄ 〉ψ̄f̄ γ µψf̄ 〈 f̄ | ). (62)

They are the “Dirac”-fermion current, marked by |f 〉〈f |, and the “Dirac”-
antifermion one, marked by | f̄ 〉〈 f̄ |, the former being associated with a proper-
mass root +m and the latter with a proper-mass root −m. Of course, both al-
ternative pictures in terms of such individual currents are consistent with QED,
since a Dirac bilinear form such as ψ̄ γ µψ is left unvaried by proper-mass re-
versal ψ → γ 5ψ , ψ̄ → −ψ̄ γ 5. Under normal ordering, either the fermion or
antifermion sector of J (Q) may just be recast so as to look like a complete (anti-
symmetric) “particle + hole” current (marked by a single proper-mass sign): the
difference is that in the former case, one is choosing “particle” = fermion (and
“hole” = antifermion) while in the latter case, one is conversely choosing “parti-
cle” = antifermion (and “hole” = fermion). The general free Lagrangian (48) can
be made invariant also under local U(1) transformations generated by Q, provided
that a minimal coupling term like −J (Q)A is inserted into it, with A ≡ Aµ being
a (massless) vector field, such that

P †
in Aµ(xν) Pin = Aµ(xν) , P †

ex Aµ(xν) Pex = −Aµ(xν). (63)

The additional presence of −J (Q)A clearly breaks the original covariance of
(48) under rotations in Sin. The coupling term in question is double-structured as
well: it actually merges two equivalent, and only in turn available, coupling terms,
singly involving the fermionic and the antifermionic covariant current embodied
in J (Q). One may still deal with Ccov as a symmetry operation (represented by the
chirality transformation ψ → γ 5ψ , ψ̄ → −ψ̄ γ 5) provided that it is supposed
to apply to the whole interacting system (including Aµ) so as to yield

C†
cov

(
J (Q)µAµ

)
Ccov = ( − J (Q)µ

)
(−Aµ), (64)

with −Aµ being the “covariant charge-conjugate” (besides the ordinary charge-
conjugate) of Aµ. This looks just like a scalar-charge conjugation covariant oper-
ation (extended to Aµ). Note that an equivalent way of defining Ccov as a symmetry
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operation can be obtained by setting, instead of (64),

Ccov : |f 〉〈f | ⇀↽ | f̄ 〉〈 f̄ |, q ⇀↽ −q; Aµ ⇀↽ Aµ. (65)

According to (65), Ccov stands again (as in the free-particle case) for a
genuine proper-mass reversal operation, which acts strictly within Sin and leaves
both Q and Aµ unaffected. Of course, the associated property of γ 5-invariance,
if taken alone, holds as well for the single (fermionic and antifermionic) sectors
of −J (Q)A ; this indeed corresponds to the fact that such sectors are individually
invariant under the operation

q −→ −q, m −→ −m, Aµ −→ −Aµ, (66)

which can indifferently be seen as the “bare” analogue of (64) or (65).
Consider now the pseudoscalar-charge currentJ (Qch), endowed with a “dress-

ing” charge operator like

Qch = Qch(qch) = −qchCcov = qch (|f ch〉〈f ch| − |f̄ ch〉〈f̄ ch|), (67)

qch (= ∓|qch|) being the given Qch eigenvalue associated with |f ch〉. At first
sight, no individual chiral-field currents seem to be involved in the fermionic (i.e.,
qch |f ch〉J 〈f ch|) and antifermionic (i.e., −qch |f̄ ch〉J 〈f̄ ch|) sectors of it. Despite
this, the virtual existence of superselected roles for such currents may still be
recognized if J (Qch) is suitably rewritten in the form

J (Qch) = 1

2
qch(J ch − J ch(Pin)), (68)

where

J ch = |f ch〉χ̄f γ µχf 〈f ch| − |f̄ ch〉χ̄f̄ γ µχf̄ 〈f̄ ch| (69)

andJ ch(Pin) = P
†
inJ chPin, and where applying Pin can now be effectively expressed

by exploiting, instead of (26), the generalized prescription

Pin : χf (x) ⇀↽ χf̄ (x), χ̄f (x) ⇀↽ χ̄f̄ (x); qch ⇀↽ −qch. (70)

The fact is that as long as a mass term is present in the Lagrangian (48), neither
J ch norJ ch(Pin) may be independent and divergenceless, and onlyJ (Qch) as a whole
may really turn out to be a conserved pseudoscalar-charge current (Ziino, 1996).
Strictly speaking, and still in agreement with the standard electroweak formulation,
one is thus led to conclude that pure chiral-field-current gauge couplings cannot
be conceived for originally massive particles.
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4. SPONTANEOUS TWO-COMPONENT UNIVERSAL MODELS
OF A MASSLESS SPIN- 1

2 PARTICLE AND OF ITS
ANTIPARTICLE, BEING THE PURE
CHIRALITY-CONJUGATES OF EACH OTHER

The “internal parity” covariant operator defined by either (19) or (20) is such
that (by use of the chiral representation in Sin) one gets

�(x) Pin = χf (x) 〈f̄ ch| + χf̄ (x) 〈f ch|, (71)

χf (x) and χf̄ (x) being the (fermion and antifermion) chiral-field solutions given
by (24). A comparison of both Eq. (71) and its adjoint with Eqs. (23) clearly leads
to (26). In view of (13), it then follows that Pin essentially amounts to a chirality
inversion operator for the two fields χf , χf̄ and their adjoints. Such a property
should be expected to take on a special significance in the zero-mass case, as
therein a chirality eigenvalue can give also a direct information on the particle
helicity (according to the sign of the particle energy).

For |m| → 0, the Lagrangian (48) reduces to

L(|m| → 0) = 1

4

[
i
(
�̄γ µ∂µ� + �̄(Pin)γ µ∂µ�(Pin)

) + H.c.
]
. (72)

Such a form still has manifest covariance extended to Sin, and clearly retains
P -invariance (even when use is made of the chiral basis in Sin): the latter property
can immediately be shown up by applying the covariant prescription (49). The
peculiar feature of (72) is, however, the fact that (due to the absence of mass terms)
it can be split into two independent Lagrangians being the Pin mirror counterparts
of each other. Actually, the above-seen dual – either “Dirac” or “chiral” – nature
of a massive spin- 1

2 point fermion is now lost, since a massless (and definite
helicity) fermion is bound to be a “definite chirality” particle. An insight into this
can be gained by an inspection of (25): as |m| → 0, one gets that the two “scalar-
charge conjugated” Dirac fields ψf and ψf̄ may only survive as mixtures of the
two “pseudoscalar-charge conjugated” chiral fields χf and χf̄ . The zero-mass
limit should therefore lead to a permanent pseudoscalar-charge superselection
rule, as opposed to a permanent scalar-charge “anti-superselection” rule: on the
basis of what stated in Secs. 2, 3, a (strictly “chiral”) massless spin- 1

2 particle
and its antiparticle can exist only as a pair of pseudoscalar-charge conjugated
eigenstates, which are correspondingly bound to show vanishing scalar-charge
expectation values. For m = 0, one also has that the two fields χf , χf̄ themselves
can be made mutually distinguishable in that they annihilate (create) opposite-
helicity “particle” (“hole”) states: more precisely, the χf and χf̄ Fourier expansions
will contain “particle” annihilation and “hole” creation operators of the only
types a(p, σ−), ah†(p, σ+) and a(p, σ+), ah†(p, σ−), respectively, σ∓ denoting the
(negative and positive) helicity eigenvalues. So, after all, taking an explicit account
of the chiral condition (24), one may appropriately reduce the Lagrangian (72),
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with the help of the closure relation |f ch〉〈f ch| + |f̄ ch〉〈f̄ ch| = 1, to the essential
“bare” form (Barut and Ziino, 1993)

L(|m| → 0) = 1

4

[
i (χ̄f γ µ∂µχf + χ̄f̄ γ µ∂µχf̄ ) + H.c.

]

= LL + LR, (73)

where

LL ≡ 1

4
( i χ̄f γ µ∂µχf + H.c.) , LR ≡ 1

4
( i χ̄f̄ γ µ∂µχf̄ + H.c.) (74)

(here the subscripts L = “left-handed” and R = “right-handed” clearly have strict
covariant meanings, just related to the two chirality signs). The P -invariance
property of (73), as well as of the single Lagrangians (74), can be inferred again
from (49):

P : χ̄ γ µ∂µχ −→ χ̄ γ 0γ µ∂µγ 0χ = χ̄ γ µ∂µχ. (75)

Likewise, recalling the χ -field normalizations in (24), one may suitably introduce
a “whole” fermion–antifermion covariant massless field

ψ(x) ≡ ψ±(x) = 1√
2

[±χf (x) + χf̄ (x)], (76)

such that

1√
2
χf (x) = ±XLψ(x),

1√
2
χf̄ (x) = XRψ(x)

(77)
XL ≡ 1

2
(1 − γ 5), XR ≡ 1

2
(1 + γ 5),

and apparently recast (73) as an overall “Dirac” Lagrangian, in terms of the fields
ψ and ψ̄ (= ψ†γ 0) (and of their space–time derivatives):

L(|m| → 0) = 1

2
(i ψ̄γ µ∂µψ + H.c.). (78)

Unlike (72), which is so structured as to work in the whole “dressed” Fock
space F(|m| → 0) = F◦(|m| → 0) ⊗ Sin, the simplified Lagrangian (73) can also
be made working in F◦(|m| → 0) alone, now taken as an effective Fock space. For
such a purpose to be realized, the two operators Pin and Ccov (originally defined
in Sin) should be redefined by exploiting those effects which may equivalently be
ascribed to them in the two-dimensional internal space spanned by the chirality-
eigenfield basis (χf , χf̄ ) : in view of (26) and (27), this can be accomplished by
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setting
{

χ
(Pin)
f ≡ Pin χf = χf̄ , χ

(Pin)
f̄

≡ Pin χf̄ = χf

χ̄
(Pin)
f ≡ χ̄f Pin = χ̄f̄ , χ̄

(Pin)
f̄

≡ χ̄f̄ Pin = χ̄f

(79)

and
{

χ
(Ccov)
f ≡ Ccovχf = −χf , χ

(Ccov)
f̄

≡ Ccovχf̄ = +χf̄

χ̄
(Ccov)
f ≡ χ̄f Ccov = − χ̄f , χ̄

(Ccov)
f̄

≡ χ̄f̄ Ccov = + χ̄f̄

(80)

(note that the application Pin χf =PinXL

√
2 ψ+ can be represented in four-spinor

space as γ 0XL

√
2 γ 0ψ+, and so on; note also that both Pin and Ccov are still

assumed to behave like identity operators inF◦, so that you might just as well adopt
the notations χ

(Pin)
f ≡P

†
inχf Pin, χ

(Ccov)
f ≡C

†
covχf Ccov, and so on). First of all, one

has that according to the well-known general anticommutation rules for a, a†, ah†,
and ah, it must always result a(p, σ∓) �= ah(p, σ∓) and a†(p, σ∓) �= ah†(p, σ∓).
Hence it can be drawn that (73) will still embody two formally distinct, alternative
covariant pictures, the former just in terms of (positive and negative energy) left-
handed massless fermions, and the latter just in terms of (positive and negative
energy) right-handed massless antifermions. In Dirac’s language, such a pair of
equivalent descriptions still corresponds, as in the nonzero-mass case, to choosing
either “particle” = fermion (and “hole” = antifermion) or “particle” = antifermion
(and “hole” = fermion). Both pictures have their respective free Lagrangians, LL

and LR, and these (each with its own types of annihilation and creation operators)
are acting in two different covariant subspaces of F◦(|m| → 0), say, F◦

L (for
positive- and negative-energy fermions) and F◦

R (for positive- and negative-energy
antifermions):

F◦(|m| → 0) = F◦
L ⊕ F◦

R. (81)

The normally ordered versions of LL and LR can be written down as

(: LL :) = 1

8

[
i
(
χ̄f γ µ∂µχf + χ̄

(h)
f̄

γ µ∂µχ
(h)
f̄

) + H.c.
]

(82)

and

(: LR :) = 1

8

[
i
(
χ̄f̄ γ µ∂µχf̄ + χ̄

(h)
f γ µ∂µχ

(h)
f

) + H.c.
]
, (83)

χ (h) (χ̄ (h)) differing from χ (χ̄) just by the substitutions a (a†) → ah (ah†) and ah†

(ah) → a† (a); and with the help of the anticommutation rules for the annihilation
and creation operators, it can be shown that (thanks to automatic cancellations of
infinities) such Lagrangians are nothing but LL and LR themselves as rewritten in
manifest symmetrized (but no longer manifest covariant) forms:

LL = (: LL :), LR = (: LR :). (84)
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On the other hand, to get F◦
L

⇀↽ F◦
R, it is clearly sufficient to apply transformation

(79), which is further such that

ψ (Pin) ≡ Pin ψ = ±ψ, ψ̄ (Pin) ≡ ψ†P †
inγ

0 = ±ψ̄, (85)

ψ (ψ̄) correspondingly standing for either fermion–antifermion field ψ± (ψ̄±)
defined in (76). As a result of (79), one just obtains

Pin : LL ⇀↽ LR ; (86)

and the same can be written for the manifest symmetrized forms (82) and (83),
provided that (79) is extended to the “hole” fields by means of the substitutions
χ, χ̄ → χ (h), χ̄ (h). Of course, if the overall Fock space (81) were only allowed for,
and the Lagrangian (73) were taken only in terms of ψ and ψ̄ , then the definitions
of parity P and charge conjugation C would turn out to be trivial: in line with
(85), one simply has

ψ̄ (P )(xν)γ µ∂µψ (P )(xν) = ψ̄ (Pst)(xν)γ µ∂µψ (Pst)(xν)

= ψ̄(xν)γ 0γ µ∂µγ 0ψ(xν) (87)

and

ψ̄ (C)γ µ∂µψ (C) = ψ̄ (Cst)γ µ∂µψ (Cst) = ψ̄ (h)γ µ∂µψ (h), (88)

where Pst is strictly defined by

Pst :

{
a(p, σ∓) → a(−p, σ±), ah†(p, σ±) → −ah†(−p, σ∓)

a†(p, σ∓) → a†(−p, σ±), ah(p, σ±) → −ah(−p, σ∓)
(89)

and Cst by

Cst :

{
a(p, σ∓) → ah(p, σ∓), ah†(p, σ±) → a†(p, σ±)

a†(p, σ∓) → ah†(p, σ∓), ah(p, σ±) → a(p, σ±).
(90)

It is easily seen, however, that neitherF◦
L norF◦

R (but only their sum) is an invariant
space with respect to the individual operations (89) and (90). So, to make sure
that P and C are defined also within each single space F◦

L,R, it cannot merely be
assumed that P = Pst and C = Cst : in full analogy with the “dressed” formalism,
it must rather be put P = PinPst (or P = PinPex) and C = PinCst, with P being
still reducible to Pst (or Pex) and C to Cst, if applied to the field ψ (ψ̄) “as a whole.”
One gets, for instance,

χ̄
(P )
f (xν)γ µ∂µχ

(P )
f (xν) = χ̄

(Pst)
f̄

(xν)γ µ∂µχ
(Pst)
f̄

(xν)

= χ̄f (xν)γ 0γ µ∂µγ 0χf (xν) (91)
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and

χ̄
(C)
f γ µ∂µχ

(C)
f = χ̄

(Cst)
f̄

γ µ∂µχ
(Cst)
f̄

= χ̄f̄
(h)γ µ∂µχ

(h)
f̄

, (92)

where it has been allowed for (79) (and its “hole” counterpart) and for the fact that
{

χ
(Pst)
f̄

(xν)= 1√
2
(1 + γ 5)ψ (Pst)(xν)= 1√

2
(1 + γ 5)γ 0ψ(xν)=γ 0χf (xν)

χ̄
(Pst)
f̄

(xν)= 1√
2
ψ̄ (Pst)(xν)(1 − γ 5)= 1√

2
ψ̄(xν)γ 0(1 − γ 5)= χ̄f (xν)γ 0.

(93)

The invariance of the single Lagrangians LL,R under P (= PinPst) is still
obtained as in (75), and the invariance of them under C (= PinCst) is made
manifest once they are taken in their respective symmetrized forms (82) and (83).
By comparing such forms, one can see as well that applying Cst to either of them
yields indeed the same net result as applying Pin to it:

Cst : (: LL :) ⇀↽ (: LR :). (94)

In this sense, transformation (90) may also be regarded as an effective (non-
covariant) representation of Pin itself, say, P (eff)

in , acting in F◦(|m| → 0). Such an
outcome, Cst = P (eff)

in , can be suitably shown up by setting
{

a(p, σ−) ≡ a(p, σ− ; L), ah†(p, σ+) ≡ a†(p, σ+ ; L)

a†(p, σ−) ≡ a†(p, σ− ; L), ah(p, σ+) ≡ a(p, σ+ ; L)
(95)

for the left-handed picture, and
{

a(p, σ+) ≡ a(p, σ+ ; R), ah†(p, σ−) ≡ a†(p, σ− ; R)

a†(p, σ+) ≡ a†(p, σ+ ; R), ah(p, σ−) ≡ a(p, σ− ; R)
(96)

for the right-handed one: transformation (90) is thus made an explicit L ⇀↽ R

interchange operation. From comparing (90) with both (95) and (96), it can,
however, be immediately inferred that at variance with the massive-chiral-field
case, the only effect really produced by either Pin or Cst on a massless spin- 1

2
fermion (antifermion) is to transform it, as described in one picture, into itself as
described in the other picture: the point is that no helicity flip is involved, and so
the “transformed” (massless) spin- 1

2 particle cannot look really changed. In the
limiting case of zero-mass fermions, one has indeed that the actual operation of
particle ⇀↽ antiparticle conjugation cannot be disjoined from parity, or better, from
“external” parity. Suitable effective representations may also be found, accordingly,
for C (= PinCst) and P (= PinPst); these, C(eff) and P (eff), hold both in either single
Fock space F◦

L,R and are such that C(eff) = 1 and P (eff) = C(eff)P (eff) = CstPst =
(CP )st. For instance, it can easily be seen that the general prescription (75), as
applied to (82), globally corresponds to

P (eff) :

{
a(p, σ−) → ah(−p, σ+), ah†(p, σ+) → −a†(−p, σ−)

a†(p, σ−) → ah†(−p, σ+), ah(p, σ+) → −a(−p, σ−).
(97)
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Within this parity-symmetric framework − which, nevertheless, paradoxi-
cally admits only a left-handed (right-handed) field solution for any zero-mass
fermion (antifermion) – one has that the two “covariantly conjugated” massless
chiral fields (77) (the former pertaining to a positive- and negative-energy fermion,
the latter to a positive- and negative-energy antifermion) are nothing but chirality
conjugated fields, each just reproducing the “missing counterpart” of the other:
indeed, the overall fermion–antifermion field (76) is formally structured the same
as a “whole” Dirac field with “chiral projections” (77). An explicit use of Weyl’s
γ -matrix representation thus leads to a natural two-component scheme for a
massless spin- 1

2 fermion, and to a pure mirror analogue for the corresponding
antifermion, with no chiral contribution really missing on the whole. This is a
scheme strictly precluding a left-right symmetric electroweak theory like the one
known in the literature (Mohapatra and Pati, 1975). This may also be said to be
a universal two-component theory, in the sense that, far from being an ad hoc
theory for neutrinos (Salam, 1957; Weyl, 1929), it should quite generally apply to
whatever massless spin- 1

2 particle. On the basis of such a scheme, the following
nonstandard conclusion can be drawn: Just applying helicity reversal to a massless
(and only left-handed) spin- 1

2 fermion does already mean turning it into its (only
right-handed) antifermion, without any real mirror-symmetry failure involved.
This statement is closely related to the effective result P = CP expressed by (97),
with C = 1 somehow reminding us of the Majorana neutrino model (Majorana,
1937). If we take also account of the fact that the two fields (77) form just a pair
of Ccov (i.e., scalar-charge conjugation) eigenfields, we may then, after all, fully
establish that a massless spin- 1

2 particle and its antiparticle are in themselves the
pure mirror images of each other.

The property of global gauge invariance of (73) under the chiral group
U(γ 5)(1), with a generator suitably defined as

Q(γ 5) = ±|qch| (−γ 5), (98)

clearly yields the conserved free fermion–antifermion covariant chiral current

J ch(γ 5) ≡ ψ̄γ µQ(γ 5)ψ, (99)

where

ψ̄γ µQ(γ 5)ψ = 1

2
[ qch χ̄f γ µχf + (−qch) χ̄f̄ γ µχf̄ ] (100)

(qch = ±|qch|). From (77) and (80), it is immediate to see that Q(γ 5) is just
a representation of the charge Qch = ±|qch|(−Ccov) in four-spinor space. The
“dressed” complete version of (99) reads

J ch(γ 5) ≡ ψ̄γ µQ(γ 5)ψ (|f ch〉〈f ch| + |f̄ ch〉〈f̄ ch|) (101)
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and is manifestly invariant with respect to Pin as taken in its original defini-
tion (19). The current J ch(γ 5) carries the pseudoscalar charge Q(γ 5) (such that
γ 0Q(γ 5) = −Q(γ 5)γ 0) of which the two four-spinor fields χf and χf̄ are conju-
gated eigenspinors with eigenvalues +qch and −qch. It therefore behaves under P

just like an axial-vector current:

P : ψ̄(xν)γ µQ(γ 5)ψ(xν) −→ ψ̄ (P )(xν)γ µQ(γ 5)ψ (P )(xν)

= ψ̄(xν)γ 0γ µQ(γ 5)γ 0ψ(xν). (102)

The two individual (fermion and antifermion) sectors of J ch(γ 5) are themselves
axial-vector currents. This can be seen by simply substituting (77): if the Q(γ 5)

eigenvalues are made explicit, then, in view of (75), the result is

P : χf , χ̄f → γ 0χf , χ̄f γ 0; χf̄ , χ̄f̄ → γ 0χf̄ , χ̄f̄ γ 0; qch ⇀↽ −qch (103)

and automatically allows for the fact that both qch and −qch are pseudoscalars
(and must be taken with inverted signs in the same way as space coordinates). The
corresponding behavior of J ch(γ 5) under Pin is dictated by the prescription (70);
hence,

Pin : χ̄f γ µQ(γ 5)χf ⇀↽ χ̄f̄ γ µQ(γ 5)χf̄ , (104)

so that, using Eqs. (85), one may write

Pin : ψ̄γ µQ(γ 5)ψ −→ ψ̄ (Pin)γ µQ(γ 5)ψ (Pin) = ψ̄γ µQ(γ 5)ψ. (105)

Both (104) and (105) could also have been straightforwardly deduced from ap-
plying the requirement of covariance in the internal space defined by the field
basis (χf , χf̄ ). Due to its symmetrized fermion–antifermion original structure,

the whole current J ch(γ 5) can naturally be recast (owing to an automatic cancella-
tion of infinities) into a (manifest) normally-ordered form,

J ch(γ 5) = (
: J ch(γ 5) :

)
, (106)

which consists of the sum of two symmetrized “particle–hole” currents, with
“particle” = fermion (and “hole” = antifermion) and with “particle” = antifermion
(and “hole” = fermion) respectively. Thanks to the fact that γ µQ(γ 5) = −Q(γ 5)γ µ,
either one of these (mutually exclusive) currents is expressible as

1

2

(
: χ̄ γ µQ(γ 5)χ :

) = 1

4

[
χ̄ γ µQ(γ 5)χ + χ̄ (C) γ µQ(γ 5)χ (C)

]
, (107)

where C (=CstPin) is the ordinary charge-conjugation operation as represented
in the Fock space (2), and where (still using the same symbol C also to denote
the C-matrix) one has that χ (C) = Cχ̃† and χ̄ (C) = χ†(C)γ 0 = χ̃C†γ 0. So, since
χ (C) (χ̄ (C) ) correspondingly stands for the “ordinary charge-conjugate” of χ (χ̄ ),
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each current (107) may indeed be said to be manifestly C-invariant (just as it more
familiarly happens for the normally-ordered version of the Dirac-like “whole”
current J ch(γ 5)µ = ψ̄γ µQ(γ 5)ψ ). This exactly counterbalances the effect due to P ,
so that the overall intrinsic behavior of a current like (107) under CP will be still
the same as the one of a scalar-charge (vector) current.

Actually, the two massless fields χf and χf̄ are naturally prevented from
being scalar-charge conjugated eigenfields (with opposite eigenvalues), since an
overall axial-vector current like (99), carrying a true charge like (98), would be
met with again. At the origin of such an outcome, there is clearly the fact that
pseudoscalar and scalar charges anticommute (this basic property may further
be expected to underlie the well-known axial anomaly occurring in the limit as
m → 0). Yet, if one is dealing with the only square magnitude, say, |q|2, of a
scalar charge, then, strictly speaking, one may always think also of a conserved
free current having the form

J ch ≡ ±|q| ψ̄γ µψ = ±|q| 1

2
(χ̄f γ µχf + χ̄f̄ γ µχf̄ ), (108)

where the c-number ±|q| is the same for χf as for χf̄ and therefore stands
for a mere root of |q|2 (with a purely conventional sign). Setting q = ±|q| and
Q = qPin, and recalling Eqs. (85) and (76), one should more rigorously write

J ch ≡ ψ̄γ µQψ = ψ̄Qγ µψ = ±q ψ̄γ µψ, (109)

Q being the scalar charge in question, formally having the “whole” field ψ (ψ̄) as
an eigenfield:

Qψ = Qψ± = ±qψ±, ψ̄Q = ψ̄±Q = ±qψ̄. (110)

Since, according to (79), one has, e.g., χ
†
f Qχf = q χ

†
f χf̄ = q χ

†
f̄

χf = 0,
it is evident that both the fermion and the antifermion can only be assigned an
expectation value 〈Q〉 = 0, which corresponds to a maximal uncertainty as regards
the actual (relative) sign taken by Q. The new current J ch is indeed a vector current
(not normally ordered yet) which can be derived starting from the invariance of
(78) under the group of global gauge transformations ψ → eiQαψ, ψ̄ → ψ̄e−iQα ,
generated by Q (α being a constant real angle). The symmetrized “particle–hole”
version of it,

(: J ch :) = ±|q| 1

2

(
ψ̄γ µψ − ψ̄ (h)γ µψ (h)

)
, (111)

is such that

C (Cst) : (: J ch :) −→ − (: J ch :), (112)

where C (not affecting helicities) is causing still no actual fermion ⇀↽ antifermion
conjugation, but only an overall ψ̄γ µψ ⇀↽ ψ̄ (h) γ µψ (h) interchange, equivalent
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to a net change in sign of the single |q|2 root associated with both the fermion and
the antifermion. Since CcovQ = −QCcov and ψ̄ (Ccov)γ µψ (Ccov) = ψ̄γ µψ , there is
also a strict covariant analogue of (112), which reads

Ccov : J ch −→ −J ch. (113)

This implies

Ccov : ±|q| −→ ∓|q| (114)

when Q is replaced by ±|q| as in (108).
On the basis of all that, it can be rigorously established that the unusual

parity-symmetry in hand, paradoxically available for a pure left-handed massless
spin- 1

2 fermion and its (pure right-handed) antiparticle, is to be traced back just to
their essential being a pair of pseudoscalar-charge conjugated eigenstates (which,
by nature, are transformed into each other under parity itself). As pointed out
by (108), two such particles are allowed to bear also (nonzero) scalar charges,
even though definite only in magnitude and maximally indefinite in sign: given,
e.g., one of these charges, of square magnitude |q|2, they may, in principle, be
assigned only a (conventionally chosen) |q|2 root − either +|q| or −|q| for them
both – which clearly gives no sort of information on the (relative) sign of such
a charge. The most immediate consequence is that an electrically charged pair
of covariantly conjugated (fermion and antifermion) massless fields (77) can just
be said to carry the “same” electric charge (suitably expressed by either root
±|q| = ±|e|). This peculiar outcome will indeed turn out to play a crucial role
for consistently revisiting the SU(2)L⊗U(1) electroweak scheme: thanks to it, the
“spurious” fermion (right-handed) massless isosinglets may survive as taken just
for regular antifermion SU(2)L-isosinglets.

To sum up, the massless spin- 1
2 fermion universally emerging from the

spontaneous two-component theory above can be depicted like this: it should
typically behave as a pure pseudoscalar-charge eigenstate, which is endowed
with only one helicity freedom degree and can at most carry scalar charges
subject to a maximal uncertainty in sign. This turns out to be the nat-
ural zero-mass limit of the generalized fermion model in hand, founded
on the coexistence of two anticommuting, scalar and pseudoscalar, charge
varieties.

5. WEAK-ISOSPIN COMPONENTS WITH PSEUDOSCALAR
BEHAVIORS UNDER PARITY

In the light of such premises, one can now try to reformulate the electroweak
scheme (Glashow, 1961; Salam, 1968; Weinberg, 1967) on deeper theoretical
grounds. To begin with, let Tw denote the weak isospin one-particle operator. In
the standard (primary) version without masses, Tw is just assumed to act selectively
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on fermion isodoublets being left-handed. This appears therein to be an ad hoc
input, devoid of physical motivations, but needed to allow for the “maximally
P -violating” phenomenology (Ambler et al., 1957; Lee and Yang, 1956). The
final consequences, after mass generation, seem to be rather perplexing from
a strict theoretical viewpoint: those which (according to standard views) have
become two mere “chiral projections” of one and the same (Dirac) fermion field
are curiously left assigned to two different weak-isospin representations. The
reason for such an accommodation quite vanishes on going over to the generalized
formalism in hand, with the above-seen natural two-component fermion model as
a zero-mass limit. This formalism can just define a “chiral” particle (regardless of
experience): it should look diametrically opposed to a “Dirac” particle, or better,
like a pseudoscalar-charge eigenstate with null scalar-charge expectation values.
When mass is already present, a “Dirac” and a “chiral” particle are nothing but two
complementary (though mutually exclusive) dynamical manifestations of one and
the same fermion (or antifermion). When, on the contrary, mass is still to appear,
no “Dirac” particles can yet be found: the only massless-fermion type allowed is
just a (left-handed) “chiral” fermion, and the pure (right-handed) mirror image of
it just corresponds to its antiparticle. So, it is massless fermions (antifermions)
themselves that are, by nature, only left-handed (right-handed); and this explains
why Tw should act merely on fermion (antifermion) isodoublets being left-handed
(right-handed).

In line with what has been argued in the previous section, the third component
of Tw is now required to behave as a pseudoscalar charge under parity (if its
eigenvalues are to correspond still to massless primary eigenstates). The same, of
course, must hold for each one of the remaining Tw components. Let then Tw be
suitably redefined, by analogy with (98), as

Tw = T (−γ 5), (115)

where T stands for a usual one-particle isospin operator, whose components, as
taken in the fundamental representation, are Ti = τi/2 (i = 1, 2, 3) (τ1, τ2, and
τ3 being the Pauli matrices). Evidently, due to the presence of (−γ 5), the weak
isospin (115) as such cannot generate any SU(2) transformation group; from it, two
distinct (left- and right-handed) SU(2) generators can rather be obtained, provided
that either one of the (−γ 5) eigenvalues is directly involved. More precisely, let
us put

Tw = TL + TR, (116)

where

TL = TwXL = TXL, TR = TwXR = (−T)XR, (117)

XL and XR being the chirality projection operators quoted in (77), and where we
shall have that Tw =TL or Tw =TR according to whether Tw is acting on left- or
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right-handed chiral fields. It is immediate then to see that the single operators TL

and TR are naturally able to generate two distinct SU(2) groups, say, SU(2)L and
SU(2)R , whose fundamental representations – the former applying to (left-handed)
fermion chiral fields, and the latter to (right-handed) antifermion ones – are marked
by the effective isospin generators T and (−T), respectively. Such groups should
be thought of as being involved only in turn, depending on whether a fermion or
antifermion covariant picture is being adopted. So, at the zero-mass primary stage,
one may equally deal either with (fermion) SU(2)L isodoublets, of the lepton type

D
(�)
L =

(
χν

χ�

)
(ν ≡ ν�; � = e, µ, τ ) (118)

and of the quark type

D
(q)
L =

(
χp

χn

)
(p = u, c, t; n = d, s, b), (119)

or with (antifermion) SU(2)R isodoublets, of the antilepton type

D
(�̄)
R =

(
χν̄

χ�̄

)
(120)

and of the antiquark type

D
(q̄)
R =

(
χp̄

χn̄

)
, (121)

where

T w
3 DL = T3LDL = 1

2
τ3DL, T w

3 DR = T3RDR = 1

2
(−τ3)DL. (122)

The single members of any fermion isodoublet DL and of its antifermion
version DR are the mere chirality-conjugate counterparts of each other, as accord-
ing to (77). Each isodoublet DL (DR) will then be mapped onto its “covariant
charge-conjugate” isodoublet DR (DL) by

Pin : D
(�)
L

⇀↽ D
(�̄)
R , D

(q)
L

⇀↽ D
(q̄)
R (123)

with Pin acting as in (79); and the definitions of DL and DR may look symmetrical,
just because one correspondingly has

Pin : SU(2)L ⇀↽ SU(2)R. (124)

In this way, two covariant SU(2) pictures being the pure mirror (i.e., chirality-
conjugate) counterparts of each other are equally allowable, the former manifestly
dealing with (positive- and negative-energy) massless fermions, and the latter
with (positive- and negative-energy) massless antifermions. These are also two
mutually exclusive SU(2) pictures, in the sense that the individual isodoublet
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members of one picture are mere isosinglets in the other picture. The overall
observance of left–right symmetry is indeed shown up by the fact that there
are in addition neither right-handed massless fermions nor left-handed massless
antifermions as such, treated asymmetrically with respect to their own mirror
partners.

To summarize, for the zero-mass primary stage under consideration, a twofold
– either SU(2)L or SU(2)R – variety of weak-isospin representations is now auto-
matically available, according to whether a covariant picture manifestly in terms
of (positive- and negative-energy) fermions or antifermions is being adopted. This
peculiar feature directly follows from the new weak-isospin definition (115) and
should therefore be expected to survive even after mass appearance. Of course,
in a pure SU(2) local gauge model, no isosinglets could ever be involved. Dif-
ferent is instead the case of an SU(2)⊗U(1) model (like the electroweak one) in
which also a special subgroup generated by a scalar charge Q takes an active part.
Within it, “whole” left–right currents of the type (109) (needed to diagonalize Q

itself) should be involved as well, which will implicitly contain either SU(2)L (an-
tifermion) or SU(2)R (fermion) isosinglet contributions, just miming those ones
due to the ad hoc (right-handed fermion and left-handed antifermion) standard
isosinglets.

The new basic general pattern of free Lagrangian for an electroweak scheme
will be provided by a strict covariant form like

L = 1

4

[
i (D̄Lγ µ∂µDL + D̄Rγ µ∂µDR) + H.c.

]
, (125)

with

DL =
(

χa

χb

)
, DR =

(
χā

χb̄

)
(126)

(ā, b̄ denoting the antiparticles of a, b). This starting Lagrangian, invariant under
P as well as under Pin, is manifestly left–right symmetric and may in principle
be suitable for both alternative covariant pictures (each one with a complete
energy spectrum) in terms of either SU(2)L (fermion) or SU(2)R (antifermion)
isodoublets. If we want in particular to select the SU(2)L (fermion) picture, we
should appropriately rewrite (125) in the “asymmetrical” form

L(L) = 1

4
[ i (D̄Lγ µ∂µDL + χ̄ā γ µ∂µχā + χ̄b̄ γ µ∂µχb̄) + H.c.], (127)

where χā (χ̄ā) and χb̄ (χ̄b̄) enter as mere SU(2)L isosinglets. This evidently leads
us to a spontaneous breaking of Pin symmetry: applying Pin to L(L) will mean
turning it into

L(R) = 1

4
[ i (D̄Rγ µ∂µDR + χ̄a γ µ∂µχa + χ̄b γ µ∂µχb) + H.c.], (128)



New Electroweak Formulation Fundamentally Accounting for the Effect Known 2047

where L(R) is nothing but L as likewise re-expressed in an “asymmetrical” form
just pertaining to the SU(2)R (antifermion) picture. More generally, one has that
the Pin-invariance property originally shown by L would be “hidden” as follows:

Pin : L = L(L) ⇀↽ L = L(R). (129)

If the local gauge model to be built were a pure SU(2) one, generated by
pseudoscalar charges only, then the isosinglet sector could be taken away from
either (127) or (128), since it would be both redundant and dynamically irrele-
vant. This sector cannot be ignored, on the contrary, for a local gauge scheme
just like the electroweak one, in which (at least) one scalar charge is involved,
being responsible for the covariant generation of “whole” left–right U(1) gauge
couplings.

6. PARITY-INVARIANT GAUGE SCHEME FOR LEPTONS
AND QUARKS IN THE ABSENCE OF MASSES

Let us suppose, as usual, both leptons and quarks to be initially massless,
and let us apply to them the two-component universal model of Section 4. At
variance with what has been believed so far, the neutrino and the antineutrino of
any given lepton family � (= e, µ, τ ) are then to be P-symmetrically interpreted
as just a pair of pseudoscalar-charge conjugated particles being eigenstates of
scalar-charge conjugation and intrinsically amounting to pure mirror images of
each other. The same should hold for the so-called “charged” leptons, along with
their own antileptons, and for the two quark types p (= u, c, t) and n (= d, s, b),
along with their own antiquarks: as long as they are taken massless, they may
at most carry, besides well-defined pseudoscalar charges, only scalar charges
looking maximally indefinite in sign (if not zero). In short, a new basic feature
should mark, without distinctions, all initial leptons and quarks: their natural being
pseudoscalar-charge eigenstates with null scalar-charge expectation values. As
already pointed out, this model has a pure theoretical origin: it is the zero-mass
extreme consequence of a generalized fermion quantum field formalism which,
by means of the internal transformation (25), is able to define a covariant pair of
“pseudoscalar-charge conjugated” massive chiral fields, χf and χf̄ , on the same
footing as a covariant pair of “scalar-charge conjugated” massive Dirac fields, ψf

and ψf̄ , in a framework spontaneously including two anticommuting, scalar and
pseudoscalar, charge varieties.

On dealing with massless leptons and quarks so conceived, we can just
exploit the general covariant fermion–antifermion free Lagrangian L(|m| → 0) as
expressed in the simplified form (73) with (77) understood:

L(|m| → 0) = Lf f̄ , (f = ν�, �, p, n). (130)
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To begin with, for any individual family of neutrino–antineutrino pairs, we
shall have (Barut and Ziino, 1993)

Lνν̄ = 1

4
[ i (χ̄νγ

µ∂µχν + χ̄ν̄ γ µ∂µχν̄ ) + H.c.], (ν ≡ ν�), (131)

χν (χ̄ν) and χν̄ (χ̄ν̄) formally being, in view of (77), the mere chirality conjugates
of each other. A Lagrangian like (131) yields indeed a natural neutrino two-
component scheme, with no parity violation being really involved: the left- and
right-handed sectors of it are singly P -invariant due to the extended covariant
prescription (75) now demanded by (25). Quite a similar (two-component) scheme
primarily applies to both the remaining leptons and the quarks, despite the fact
that these are also electrically charged particles. Actually, at the zero-mass stage,
the electric charge (just like any other scalar charge) may at most be taken as being
defined only in magnitude, which is obviously left unvaried on passing from the
particle to the antiparticle. Let then |q|2 be its square magnitude relevant to a given
(χf , χf̄ ) field pair, where one has |q|2 = 0 only for χf (χf̄ ) = χν (χν̄). To express
the “absolute strength” (with no relative-sign information) merely specifying such
a charge, one can also choose, for convenience, either single conventional root
∓|q| ( �= 0) and define a corresponding one-particle charge operator Q = ∓|q| Pin

with Pin acting as in (79). In this way, a “whole” left–right free electric current
having an explicit form like (108) can be introduced, where the given sign in front
of |q| − the same for χ̄f γ µχf as for χ̄f̄ γ µχf̄ – just depends on the choice of
either |q|2 root.

Let us build from (130) the free Lagrangians

L(lepton) = Lνν̄ + L��̄, L(quark) = Lpp̄ + Lnn̄, (132)

the former being relevant to any given lepton family and the latter to any given
quark family. As for L(lepton), if one is choosing the minus sign in front of |q| in
(108) – so as to make the |e|2 root numerically coincident with the actual electric
charge, −e, of the final (massive) “charged” lepton – it becomes then appropriate to
join together the two fields χν and χ� into a weak-isospin doublet, D(�)

L , as given by
(118). Doing like this, one is automatically selecting the left-handed – i.e., SU(2)L

– variety of weak-isospin representations in the leptonic sector. Within such a
variety, on the other hand, both antilepton fields χ�̄ and χν̄ (covariantly conjugated
to χ� and χν) are to be classified as SU(2)L singlets, just miming the “right-
handed lepton” isosinglet ξ� (= χ�̄) and the “right-handed neutrino” isosinglet ξν

(= χν̄) of the standard electroweak version. Hence, if t
(lepton)
3L generally denotes the

eigenvalue of the weak-isospin third component for the case under consideration,
we are led to a leptonic Gell-Mann–Nishijima formula consistently reproducing
the standard one (with mere antilepton isosinglets identically replacing the “right-
handed lepton” isosinglets): it looks like

−|q| = (
t

(lepton)
3L + y/2

) |e|, (133)
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y being the associated weak-hypercharge eigenvalue, where, of course, |q| = |e|
for χ� as well as χ�̄, and |q| = 0 for χν as well as χν̄ . This implies that the two
fields χ�̄ and χν̄ , as far as their belonging to the SU(2)L singlet representation
is specifically concerned, are to be assigned the weak-hypercharge eigenvalues
y = −2 and y = 0, respectively. What has just been done for L(lepton) can likewise
be repeated for L(quark). So, a weak-isospin quark doublet, D

(q)
L , as given by (119)

may be introduced, in such a way that if the (positive) root +|q| = 2
3 |e| is suitably

assigned to both χp (p = u, c, t) and χp̄, then a (negative) root −|q| = − 1
3 |e| is

automatically left assigned to both χn (n = d, s, b) and χn̄. A Gell-Mann–Nishijima
formula relevant to quarks can be obtained accordingly,

±|q| = (
t

(quark)
3L + y/2

) |e|, (134)

with mere antiquark SU(2)L singlets identically replacing the standard “right-
handed quark” isosinglets. One may thus, after all, naturally recast both La-
grangians (132) so as to obtain

L(lepton) → L(lepton) = L(lepton)
(L) , L(quark) → L(quark) = L(quark)

(L) , (135)

where

L(lepton)
(L) ≡ 1

4

[
i
(
D̄

(�)
L γ µ∂µD

(�)
L + χ̄ν̄ γ µ∂µχν̄ + χ̄�̄ γ µ∂µχ�̄

) + H.c.
]

(136)

and

L(quark)
(L) ≡ 1

4

[
i
(
D̄

(q)
L γ µ∂µD

(q)
L + χ̄p̄ γ µ∂µχp̄ + χ̄n̄ γ µ∂µχn̄

) + H.c.
]

(137)

(D̄L = D
†
Lγ 0). These new Lagrangian forms possess manifest global invariance

under the group

SU(2)L ⊗ U(1)Y , (138)

where U(1)Y is generated by a weak-hypercharge variety, Y , just pertaining to
the SU(2)L representations. Both L(lepton)

(L) and L(quark)
(L) are still invariant under P ,

as effectively applied via (75), but neither of them is any longer invariant under
Pin, as defined by (79): actually, as pointed out at the end of the previous section,
a spontaneous Pin-violation occurs on passing from L to L(L). This, of course, is
a new type of “spontaneous symmetry-breaking” (SSB) even though still based
on the essential fact that an originally symmetric Lagrangian is rewritten in an
asymmetric form. Since parity P (= PinPex) is left on the whole a symmetry
operation, it follows that a Pex-violation should be likewise involved, which, in
line with the final remarks of Section 2, can account by itself for the actual left–
right spatial asymmetry shown up by the weak phenomenology of fermions. As
we shall see at the end of the present section, this further kind of SSB can just be
related to the choice of some specific covariant “vacuum state” going along only
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with a given root of |q|2. Note, on the other hand, that the symmetry “hidden” by
such a choice is a discrete one, to which the Goldstone theorem (Goldstone, 1961;
Goldstone et al., 1962) does not apply. Of course, each Lagrangian L(L) above –
taken in its own manifest symmetrized form (: L(L) :) – is left invariant not only
under P , but also under the ordinary charge-conjugation operation, C, with its
matrix representation now properly acting direct on chiral fields according to (33).
If local invariance under (138) is required as well, this can be fulfilled by adding
the two minimal gauge coupling terms

L(lepton)
int(L) = 1

2

[
−gL D̄

(�)
L γ µTLD

(�)
L · Wµ

−1

2
g′

L

(−D̄
(�)
L γ µD

(�)
L − 2 χ̄�̄ γ µχ�̄

)
Bµ

]
(139)

and

L(quark)
int(L) = 1

2

[
−gL D̄

(q)
L γ µTLD

(q)
L · Wµ

− 1

2
g′

L

(
1

3
D̄

(q)
L γ µD

(q)
L + 4

3
χ̄p̄ γ µχp̄ − 2

3
χ̄n̄ γ µχn̄

)
Bµ

]
, (140)

the former to be inserted in (136) and the latter in (137), where gL and g′
L amount to

the standard coupling constants, and where the Y eigenvalues for each single weak-
hypercharge current χ̄f γ µYχf or χ̄f̄ γ µYχf̄ are in accordance with Eqs. (133)
and (134): in particular, note that there appears no current χ̄ν̄ γ µYχν̄ just because
Yχν̄ = 0. As pointed out in the previous section, the early presence of SU(2)L-
singlet contributions should indeed be connected with the final involvement of
(left–right symmetric) currents of the type (108). In either of these SU(2)L⊗U(1)Y
coupling terms, TL is the SU(2)L generator defined by (117), and the 1

2 factor
multiplying the whole expression within square brackets is due to the normalized
chiral-field definitions (24). The “charged” gauge field Wµ = 2−1/2(W1µ − i W2µ)
and its adjoint, W †

µ, are such that the former annihilates and the latter creates a
(massless) vector boson with a T3L eigenvalue t3L = +1 and a conventional |q|2
root +|q| = |e| as assigned by either (133) or (134) (recall that only |q|2 makes
sense at this stage).

Actually, this is not the only way of proceeding. Starting anew from the
fermion–antifermion free Lagrangians (132), one can alternatively make a whole
opposite choice of |q|2 roots and build both an antilepton weak-isospin doublet,
D

(�̄)
R , as given by (120) and an antiquark weak-isospin doublet, D

(q̄)
R , as given by

(121). Doing like this, one is instead selecting the right-handed − i.e., SU(2)R –
variety of the available weak-isospin representations. Within the (equally admis-
sible) new framework so obtained, it is the fermion fields that enter as isosinglets,
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just in the place of the standard “left-handed antifermions.” An alternative set of
free Lagrangians, dual to those in (132), may thus be built,

L(lepton) → L(lepton) = L(lepton)
(R) , L(quark) → L(quark) = L(quark)

(R) , (141)

being such that

L(lepton)
(R) ≡ 1

4

[
i
(
D̄

(�̄)
R γ µ∂µD

(�̄)
R + χ̄ν γ µ∂µχν + χ̄� γ µ∂µχ�

) + H.c.
]

(142)

and

L(quark)
(R) ≡ 1

4

[
i
(
D̄

(q̄)
R γ µ∂µD

(q̄)
R + χ̄p γ µ∂µχp + χ̄n γ µ∂µχn

) + H.c.
]
. (143)

These Lagrangians can just be obtained by applying Pin – as defined by (79) –
to L(lepton)

(L) and L(quark)
(L) , respectively. They possess manifest invariance under the

group

SU(2)R ⊗ U(1)Ȳ , (144)

where U(1)Ȳ is generated by a weak-hypercharge variety, Ȳ , distinct from Y

and just pertaining to the SU(2)R representations. Likewise the two (no longer
suitable) Gell-Mann–Nishijima formulas (133) and (134) should be replaced by
the alternative ones

+|q| = (
t

(lepton)
3R + ȳ/2

) |e| (145)

and

∓|q| = (
t

(quark)
3R + ȳ/2

) |e|, (146)

where, for instance, it is the root +|q| = |e| that has now been assigned to both χ�

and χ�̄. The additional requirement of local invariance under (144) clearly leads
to the introduction of a minimal coupling term

L(lepton)
int(R) = 1

2

[−gR D̄
(�̄)
R γ µTRD

(�̄)
R · Wµ − 1

2
g′

R

(
D̄

(�̄)
R γ µD

(�̄)
R + 2 χ̄� γ µχ�

)
Bµ

]
,

(147)
to be inserted in (142), and a minimal coupling term

L(quark)
int(R) = 1

2

[
−gR D̄

(q̄)
R γ µTRD

(q̄)
R · Wµ

− 1

2
g′

R

(
−1

3
D̄

(q̄)
R γ µD

(q̄)
R − 4

3
χ̄p γ µχp + 2

3
χ̄n γ µχn

)
Bµ

]
, (148)

to be inserted in (143), TR being the SU(2)R generator defined by (117). In this
alternative (but equivalent) covariant dynamical description, one has that −T,
rather than T, is the effective SU(2) generator resulting from the application of
TR to DR. So, differently from the SU(2)L⊗U(1)Y approach, the two “charged”
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gauge fields Wµ and W †
µ should now be understood (the former) to annihilate and

(the latter) to create a (massless) vector boson with a T3R eigenvalue t3R = −1 and
a corresponding |q|2 root −|q| = −|e| as assigned according to (145) or (146).

It is worth spending some more words concerning the weak hypercharge,
which may here appear in two distinct varieties, Y and Ȳ , depending on whether
the SU(2)L⊗U(1)Y or SU(2)R⊗U(1)Ȳ covariant description is being adopted. One
is allowed to put

Y =Y (1/2)(−γ 5)XL + Y (0)(−γ 5)XR , Ȳ =Y (1/2)(−γ 5)XR + Y (0)(−γ 5)XL,

(149)
where Y (1/2) and Y (0) are suitable one-particle scalar operators acting in the isodou-
blet and isosinglet ordinary spaces, respectively, and where XL and XR are the
pair of chiral-projection operators defined in (117). Hence it follows, in covariant
terms, either that

YDL = Y (1/2)(−γ 5)DL, Yχf̄ = Y (0)(−γ 5)χf̄ (150)

or that

ȲDR = Y (1/2)(−γ 5)DR, Ȳ χf = Y (0)(−γ 5)χf (151)

according to the description chosen, where the shared quantities Y (1/2)(−γ 5) and
Y (0)(−γ 5) give evidence of the actual pseudoscalar nature of the weak hyper-
charge in either description. An “overall” weak-hypercharge covariant operator
can correspondingly be built by taking the sum of Y and Ȳ :

Y + Ȳ = [
Y (1/2) + Y (0)](−γ 5). (152)

Both alternative covariant coupling pairs (139), (140) and (147), (148) −
coming from two pairs of P -invariant free Lagrangians − can themselves be left
P -invariant if the gauge fields Wµ and Bµ are simply assumed to be axial-vectors
in space–time. This is because the (left- and right-handed) weak-isospin currents,
as covariantly rewritten – with the help of Eqs. (115) and (117) – in terms of Tw,

D̄Lγ µTLDL = D̄Lγ µTwDL, D̄Rγ µTRDR = D̄Rγ µTwDR, (153)

do already behave as axial-vectors under

DL,R −→ γ 0DL,R, D̄L,R −→ D̄L,Rγ 0 ; (154)

and the same clearly holds for the associated weak-hypercharge currents, in view
of (150) and (151). Note, on the other hand, that neither Eqs. (133), (134) nor
Eqs. (145), (146) may strictly have P -invariant forms, since each single root ∓|q|
is by itself a scalar (rather than a pseudoscalar) quantity. In the light of what has
been previously argued, such an “asymmetry” is however of no physical relevance
and does not imply any real P -breaking: as long as there are mere chiral fields
involved, only |q|2 can make sense, and the sign of either |q|2 root can be nothing
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but a matter of convention. Thus, on applying P (Pin) we may also take the
liberty of (conventionally) inverting all |q|2 roots (including those associated with
the gauge bosons). Due to (114), doing like this is the same as applying CcovP

(CcovPin) instead of P (Pin); which makes indeed no difference, owing to the
exclusive presence of Ccov-invariant (chiral-field) currents, coupled accordingly
to Ccov-invariant gauge fields. On this understanding, whether one is concerned
with leptons or quarks, the reversal ±|q| → ∓|q| may well be said to be an effect
implicitly induced by Pin (= CcovPin) as a result of the transformation

Pin : (t3L + y/2) |e| −→ (t3R + ȳ/2) |e|. (155)

All the couplings above can also be naturally assumed to be invariant under
the (ordinary) charge conjugation C, as properly applied to chiral-field currents in
the way (33) (which just enables the usual C-matrix to induce chirality inversion
as well). Concerning the charged-current coupling terms, the net effect produced
by C will be to turn them into their own Hermitian conjugates. As further regards
the neutral-current coupling terms, their normally ordered versions will behave
under C in line with (107), so that C invariance may simply be guaranteed by
setting

C† W3µ C = W3µ, C† Bµ C = Bµ. (156)

Yet, in accordance with what happens for the two original, Pin mirror free-
Lagrangian pairs (136), (137) and (142), (143), it can easily be seen that neither
(139), (140) nor (147), (148) are invariant under Pin. For instance, starting from
(139) and recalling both (104) and (70), we obtain

Pin :

⎧
⎨

⎩

D̄
(�)
L γ µTwD

(�)
L −→ D̄

(�̄)
R γ µTwD

(�̄)
R

( − D̄
(�)
L γ µD

(�)
L − 2 χ̄�̄ γ µχ�̄

) −→ (
D̄

(�̄)
R γ µD

(�̄)
R + 2 χ̄�γ

µχ�

)
;

(157)

and hence it also follows that along with (124), one consistently has

Pin : U(1)Y ⇀↽ U(1)Ȳ . (158)

So, putting

gL = gR ≡ g, g′
L = g′

R ≡ g′ (159)

as just required by left–right equivalence, it can likewise be concluded that
Eqs. (147), (148) are the Pin mirror counterparts of Eqs. (139), (140). Of course,
such a correspondence holds provided that Pin itself (besides Ccov) is assumed to
leave all the gauge fields formally unvaried. As in particular regards Wµ and W †

µ,
recall, however, that on passing from the SU(2)L⊗U(1)Y to the SU(2)R⊗U(1)Ȳ
picture, an interchange necessarily occurs between the physical roles played by
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them; so that they should more properly be said to turn into

Wµ = W (Pin)†
µ , W †

µ = W (Pin)
µ . (160)

All that can be conveniently recast by means of a unified formalism joining
together both of the above (equally available) SU(2)L⊗U(1)Y and SU(2)R⊗U(1)Ȳ
covariant approaches. These originate in the two (equally admissible) alternative
positions (135) and (141); and either of them is implicitly related to a given
choice of |q|2 roots, which is opposite to that for the other approach. We thus
have that the two sets of SU(2)L⊗U(1)Y and SU(2)R⊗U(1)Ȳ representations may
just be “labelled” according to such choices. More precisely, each single starting
free Lagrangian (132) may be given, by use of both (135) and (141), a “whole”
manifest L + R form like

L = L(L) P+ + L(R) P−, (161)

where P+ and P− are indeed two suitable Casimir operators, such that

P+ ≡ |+〉〈+|, P− ≡ |−〉〈−| ,

P+ + P− = 1, P+P− = P−P+ = 0.
(162)

In view of the implicit effect (114) induced by the Pin (= CcovPin) operation,
the explicit presence of either P+ (coupled to L(L)) or P− (coupled to L(R)) implies
a spontaneous Ccov-symmetry-breaking, which corresponds to the introduction of
two, no longer Ccov-symmetric, vacuum states,

|0〉|+〉, |0〉|−〉, (163)

just requiring that the symmetry transformation (80) be supplemented by the
“vacuum asymmetry” effects

C†
cov P+ Ccov = P−, C†

cov P− Ccov = P+. (164)

The explicit presence in question, on the other hand, does not affect the sponta-
neous breaking of Pin symmetry already included in either (135) or (141), so that
the spontaneously-broken transformation (79) should merely be supplemented by

P †
in P+ Pin = P+, P †

in P− Pin = P−. (165)

Similarly, the “whole” weak hypercharge Y + Ȳ , as given by (152), may read

Y + Ȳ = [
Y (1/2) + Y (0)

]
(−γ 5)(P+ + P−), (166)

with

Y = [
Y (1/2) + Y (0)

]
(−γ 5)P+, Ȳ = [

Y (1/2) + Y (0)
]
(−γ 5)P− (167)
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just ensuring that

Y |−〉 = Ȳ |+〉 = 0. (168)

In this way, one is actually dealing with a unified Fock space, F (+) ⊕ F (−),
that includes two general covariant Fock-space varieties,F (+) andF (−), pertaining
to the SU(2)L⊗U(1)Y and the SU(2)R⊗U(1)Ȳ picture, respectively, and being
distinguished by the two “dressed” vacuum states (163). Thanks to (168), one is
also allowed to say that the form (161) has manifest global invariance under the
left-right symmetric gauge group

[ SU(2)L ⊗ U(1)Y ] ⊕ [SU(2)R ⊗ U(1)Ȳ ]

= [ SU(2)L ⊕ SU(2)R] ⊗ [U(1)Y ⊕ U(1)Ȳ ] , (169)

where SU(2)L ⊕ SU(2)R is generated by (115), and U(1)Y ⊕ U(1)Ȳ by (166). Quite
an analogous procedure can be exploited to join together the pair of equivalent
minimal gauge couplings in turn ensuring SU(2)L⊗U(1)Y and SU(2)R⊗U(1)Ȳ
local invariance; thus, a “whole” L + R gauge coupling of the general type

Lint(L+R) = Lint(L)P+ + Lint(R)P−, (170)

can be built, which is suitable also to ensure local invariance under the overall
group (169) (with a total number of two L + R coupling constants, g and g′, corre-
spondingly involved). Of course, each original free Lagrangian (130) shows a Ccov-
symmetric (besides Pin-symmetric) form, if taken simply as L = LP+ + LP− :
the spontaneous breakings of Ccov and Pin symmetries are together introduced just
on setting

LP+ + LP− = L(L) P+ + L(R) P− (171)

and on associating the SU(2)L⊗U(1)Y -symmetric Lagrangian form L = L(L) with
the special vacuum |0〉|+〉, and the SU(2)R⊗U(1)Ȳ -symmetric Lagrangian form
L = L(R) with the special vacuum |0〉|−〉. Note, however, that both (161) and (170)
turn out still to be invariant under the overall operation CcovPin, whose effect is
obtained by combining (164) with

Pin : L(L) ⇀↽ L(R), Lint(L) ⇀↽ Lint(R). (172)

7. MASS APPEARANCE AS A NECESSARY CONDITION FOR
A SCALAR CHARGE TO YIELD A LOCAL GAUGE COUPLING

A peculiar internal feature of the “dressed” fermion quantum field formalism
developed in Secs. 2–4 lies in the predicted coexistence of two anticommuting,
scalar and pseudoscalar, varieties of charges. Due to it, the activation of some
superselective mechanism is now generally required, in order that a charge may



2056 Ziino

give rise to a local gauge coupling. In the case of a massive fermion, such a
mechanism is switched on automatically, by the explicit involvement of a one-
particle operator representing the charge (and being defined in the “dressing”
fermion–antifermion covariant internal space Sin): for instance, if Q is the one-
particle operator associated with a given scalar charge, then applying Q (from the
right) to the unified covariant fermion–antifermion field �(x) has just the result
of superselecting the “Dirac” Sin representation of �(x) (i.e., the one in which Q

itself is made diagonal). On passing to the zero-mass case, the nonstandard feature
above is brought to its extreme consequences: these are a permanent superselection
rule for pseudoscalar charges, on one hand, and a permanent anti-superselection
rule for scalar charges, on the other. Under such special constraints, the following
statement can be shown to hold:

Theorem 1. In principle, any scalar charge carried by a massless spin- 1
2 fermion

(antifermion) should be strictly prevented from generating a local gauge coupling;
such a goal could be realized only if the fermion (antifermion) is simultaneously
induced to acquire a mass.

The proof is based just on the new, pure and simple specular internal models
universally applying to massless spin- 1

2 point fermions and related antifermions.
Suppose the actual existence in Nature of two such particles carrying at least one
nonzero scalar charge. By use of the P -invariant Lagrangian (73), a unified, fully
covariant description of them both is now available, in terms of two fields, χf and
χf̄ , having definite and opposite chiralities. These, however, are the pure chirality
conjugates of each other and cannot stand at all for two (mutually conjugate)
“scalar-charge eigenfields.” The fermion and the antifermion so conjectured would
therefore behave like particles with a scalar charge being subject to a maximal
uncertainty in sign. Hence, the exact opposite of a superselection rule should
hold for that charge – whose “eigenfields” might be thought of only as fifty-fifty
mixtures of χf and χf̄ – and there could be no mechanism diagonalizing it (and
so allowing it to generate a local gauge coupling). One clearly has, on the other
hand, that the appearance of a mass for such a pair of particles would both remove
the anti-superselection rule in question and allow an actual diagonalization of the
scalar charge.

The theorem above, if applied to the electroweak scheme, sets anew the ques-
tion about spontaneous symmetry-breaking (SSB) and fermion masses. According
to the standard approach, there seems to be no reason (inherent in electroweak
dynamics) for the appearance of fermion masses: the Higgs couplings to fermions
are just inserted ad hoc, so that theory may fit in with experience. On passing to
the present approach, the viewpoint is radically changed; and the fact that every
pointlike fermion with at least one scalar charge is also a massive particle can no
longer be taken as occurring by chance. Herein, on the contrary, the appearance of
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fermion masses (via SSB) is strictly made an essential internal requirement of the
model: without it, no actual scalar-charge eigenstates (with nonzero eigenvalues)
could ever be obtained, and no scalar charges (such as the electric and color ones)
would ever be able to generate local gauge couplings. Such a viewpoint should
more properly demand some SSB mechanism no longer having a presumed “ex-
ternal” origin (connected with the existence of the Higgs particle). This is indeed
reinforced by the following new basic theoretical result directly proceeding from
the model of Section 4: even a massless spin- 1

2 fermion, and not only a massless
spin-1 boson, needs to gain an extra helicity freedom degree for it to be made mas-
sive. If so, then the generation of a fermion mass should likewise be expected to
be rather obtained from the “absorption” of a suitable would-be-Goldstone boson
(than from the coupling to a new, yet undiscovered, real particle).

8. A UNIFIED, PURE “INTERNAL” MECHANISM OF MASS
GENERATION, WITH AN EXTRA WOULD-BE-GOLDSTONE
BOSON REPLACING THE HIGGS PARTICLE

Take, for a moment, the Higgs field doublet φ(x) as usually parametrized in
terms of the four Hermitian scalar fields θ1(x), θ2(x), θ3(x), and η(x), where the
θi(x)’s (i = 1, 2, 3) stand for the three (massless) would-be-Goldstone bosons,
and η(x) stands for the (massive) Higgs boson:

φ(x) = exp

[

i

3∑

k=1

θk(x)
τk

2

] (
0

1√
2
v + η(x)

)
(173)

(v being a real constant). As is well-known, the φ(x) Lagrangian is of the type

LHiggs = (∂µφ)†∂µφ − V (φ†φ) (174)

with

V (φ†φ) = a φ†φ + b (φ†φ)2, (a < 0, b > 0). (175)

Recently, it has been pointed out (Ziino, 2003) that in the standard electroweak
framework, such a manner of parametrizing φ(x) – so as to make it reducible to a
pure Hermitian field by a suitable SU(2) transformation – is not fully consistent
with the fact that φ(x) is also expected to bear a nonzero “charge” (i.e., the weak
hypercharge) which is further a scalar relative to rotations in weak-isospin space:
strictly speaking, one should have rather to do with a field φ(x) that would be left
accordingly a non-Hermitian (i.e., “charged”) field under whatever SU(2) gauge
transformation, including the one defining the “unitary gauge” itself. It has been
shown as well that the only possible way out of such an impasse is to re-parametrize
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φ(x) in the new, SU(2)⊗U(1)-covariant form

φ(x) = exp

[

i

3∑

k=1

θk(x)
τk

2

]
1√
2

(
0

v exp[iη(x)]

)

= exp

{

i

[
3∑

k=1

θk(x)
τk

2
+ η(x)

]}

φ◦ (176)

where

φ◦ = 1√
2

(
0
v

)
(177)

is the (real) vacuum expectation value of φ(x), and where η(x) now stands for
a fourth (massless) would-be-Goldstone boson (replacing the Higgs particle). At
first sight, this would seem to violate the constraint of no more than three would-be-
Goldstone bosons in all (which follows from the invariance property of φ◦ under
the electromagnetic gauge subgroup) (Cheng and Li, 1984). Such a constraint,
however, holds only if V (φ†φ) �= constant . As can be checked by substituting
(176) into (175), we now have, on the contrary,

V (φ†φ) = a
v2

2
+ b

v4

4
= constant; (178)

so that we may consistently obtain a mass matrix

(M2)ik = ∂2V

∂φi∂φk

= 0, (i, k = 1, 2, 3, 4) (179)

for all four Hermitian fields φi generally chosen to parametrize φ(x). As the
constant term (178) may clearly be taken away from (174), the new parametrization
(176) also allows us to reduce (174) to a pure free Lagrangian,

LHiggs = (∂µφ)†∂µφ, (180)

with φ always keeping, however, its own vacuum expectation value (177). Of
course, the (massless) field η(x) appearing in (176) can be eliminated by carrying
out the U(1) gauge transformation

φ(x) → exp[−iη(x)] φ(x). (181)

An extended, SU(2)⊗U(1)-covariant, unitary gauge should be introduced
accordingly, which may permit the simultaneous elimination of η(x) as well as of
θ1(x), θ2(x), and θ3(x): it is defined by

φex(x) ≡ exp

{

−i

[
3∑

k=1

θk(x)
τk

2
+ η(x)

]}

φ(x) = φ◦. (182)
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This can be more appropriately re-expressed in the form

φex(x) = U exp[−i Ystη(x)] φ(x) (183)

where U is the SU(2) transformation characterizing the standard unitary gauge,

U ≡ exp

[

−i

3∑

k=1

θk(x)
τk

2

]

, (184)

and Yst is a one-particle standard operator of weak hypercharge, being such that
Ystφ(x) = (+1) φ(x). As for the way how the original SU(2)⊗U(1) gauge fields,
Wµ(x) and Bµ(x), transform on passing to the new unitary gauge, the only novelty
is that Bµ(x) is no longer left invariant: writing the covariant derivative for φ(x)
as Dµ = ∂µ + igT · Wµ + i(g′/2)Bµ(x), with T = ( 1

2τ1,
1
2τ2,

1
2τ3), and denoting

the transformed fields by Wex
µ (x) and Bex

µ (x), one has

T · Wex
µ (x) = UT · Wµ(x)U−1 − i (1/g) U∂µU−1

Bex
µ (x) = Bµ(x) + (2/g′) ∂µη(x)

(185)

where U is given by (184). This, however, does not imply any physical changes,
as one always obtains (in terms of the ordinary Weinberg mixing angle θW ) the
two mass eigenfields

{
Zµ = cos θWW ex

3µ − sin θWBex
µ

Aµ = sin θWW ex
3µ + cos θWBex

µ

(186)

the former having the usual mass MZ = gv/2 cos θW and the latter being massless.
Actually, the inclusion of the factor exp[−iη(x)] in the definition of the unitary
gauge appears to be immaterial to get the IVB masses, and the mere standard
unitary gauge is still sufficient for such a purpose. One has, on the contrary, that
the fermions are now strictly massless in the standard unitary gauge: they can be
made massive only if η(x) is eliminated as well (by the more appropriate choice
of the extended unitary gauge). On the other hand, the removal of η(x) clearly
implies that the associated freedom degree should somehow reappear elsewhere.
This indeed corresponds to the fact that any weakly-interacting original fermion
happens to gain one extra helicity freedom degree on acquiring a mass: the phe-
nomenological primary constraint of only one (negative) helicity eigenvalue turns
out to be removed, and also a positive-helicity eigenstate is made allowable for
such a fermion. We are thus led, after all, to assert that a Higgs mechanism of
disappearance of η(x) would seem just to be essential for the original (only left-
handed) weakly-interacting quarks and charged leptons to be made massive.

Another fundamental question to deal with is the one concerning the renor-
malizability and unitarity of the theory, which must survive despite the absence
of the Higgs-particle contributions. Actually, in view of what stated above, we
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now have that leptons and quarks are left massless in any gauges where the extra
would-be-Goldstone freedom degree η(x) is still present. This feature may be ex-
pected to be of crucial importance on the basis of the following fact: in the standard
approach to electroweak processes, the Higgs cancellations of high-energy unitar-
ity violations generally require Higgs couplings (to fermions and gauge bosons)
proportional to the fermion and the gauge-boson masses themselves, which just
implies that for vanishing masses, such violations would disappear automatically
(i.e., with no Higgs couplings). The problem is left, however, of strictly defin-
ing a class of extended renormalizable (R) gauges being able both to generalize
’t Hooft’s gauges and to remedy the apparent failure of unitarity due to the absence
of the Higgs particle. For this purpose, it is appropriate to set

ρ(x) = exp[iη(x)] ≡ ρ(+)(x), ρ†(x) = exp[−iη(x)] ≡ ρ(−)(x), (187)

ρ† belonging to the charge-conjugate isodoublet iτ2φ̃
† (with weak hypercharge

−1). A general “Yukawa” fermion-coupling term may also be introduced: this, in
the standard (and not extended) unitary gauge, reads

L(f)
Yukawa = 1√

2
v

∑

i,j

fij ψ̄
(∓)
iL ρ(±) ψjR + H.c. (188)

where ψ̄iL = ψ̄i(1 + γ 5) 1
2 and ψjR = 1

2 (1 + γ 5)ψj , and where the fij ’s are suit-
able coupling constants depending on the fermion flavor indices i, j . The super-
script (∓) attached to ψ̄iL refers to either sign of the associated weak-isospin third
component (according to whether the fermion isodoublet is coupled to φ or iτ2φ̃

†,
respectively). In (188), due to the presence of η(x), both ψ̄iL and ψjR fermion
fields are strictly massless, and L(f)

Yukawa itself is a pure interaction Lagrangian.
Note that in this same gauge, on the contrary, one usually gets an interaction
(Higgs) term plus a mass term. On passing to the extended unitary gauge, η(x) is
eliminated and L(f)

Yukawa may take the wanted form

L(f)
Yukawa = L(f)

mass ≡
∑

i,j

mij ψ̄
ex
iL ψex

jR + H.c. (189)

with mij = 1√
2
vfij and

ψ̄ex
iL = ψ̄iL exp[ i Ystη(x)] , ψex

jR = exp[−i Ystη(x)] ψjR, (190)

Yst being the one-particle (standard) operator of weak hypercharge. In such a
gauge, of course, it is at the expense of the η(x) would-be-Goldstone boson that
the original (pure left-handed) weakly-interacting charged fermions have been
made massive and have gained an extra helicity freedom degree. Of course, it
may conversely be argued that Eq. (188) stands just for Eq. (189) as recast in an
extended new gauge still including the standard unitary one. The single would-be-
Goldstone boson field η(x) peculiar to this gauge is associated with a (standard)
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propagator 1/k2 (k2 being the square magnitude of the four-momentum carried
by η). The corresponding propagator for ρ(x) is not so immediate to find. Yet, we
may choose an intermediate (“primed”) gauge, such that

η −→ η′ = η′(ε) = (1 − ε)η, (0 < ε < 1). (191)

In this alternative gauge, the free field equation ∂µ∂µη = 0 is turned into

(1 − ε)−1∂µ∂µη′ = 0 (192)

and the propagator for the transformed field η′ correspondingly reads

(1 − ε)

k2
. (193)

The extended unitary gauge (in which also η is absent) can clearly be approached,
in a continuous manner, by taking the limit ε → 1. Suppose then (1 − ε) to be an
infinitesimal, and consider the special “primed” gauge thus defined. By means of
such a choice, the relations between ρ ′(±) = exp[±iη′] and η′ are made linear, and
each actual coupling to ρ ′(±) – which (due to the survival of the η freedom degree)
still involves true massless spin- 1

2 fields – can simplier be handled in terms of
an effective (seemingly massive-field) coupling to η′ only, with a corresponding
propagator (193): just as for the general case of a whole power series expansion
of ρ ′(±), what is looking like a “mass” sector in the coupling to ρ ′(±)(ε → 1) may
at most be regarded as a “would-be-mass” sector, since (with η being still present)
it does not yet correspond to a real gain of the further helicity freedom degree
needed by every primary fermion to acquire a mass. In a gauge like this, infinitely
close to (but never strictly coincident with) the extended unitary one, the limiting
condition of manifest unitarity can still be obtained both for leptons and for quarks
(despite the absence of the Higgs particle) thanks to their masslessness. The same
may apply also to the intermediate-vector-boson (IVB) dynamics, provided that
the standard unitary gauge (still included in the considered new gauge) is likewise
replaced by a ’t Hooft gauge which is infinitely close to it (and in which all gauge
bosons are left massless): this, on the other hand, is nothing but the usual (’t Hooft)
procedure for correctly approaching the propagator of a massive spin-1 boson.
The whole special gauge so obtained can be said to belong to a class of extended ’t
Hooft gauges. Thus (owing to gauge invariance) the unitarity of the theory appears
to be fully ensured, and the renormalizability of it is made manifest by the actual
existence of a suitable class of extended R gauges (just generalizing ’t Hooft
ones) with good high-energy behaviors of all the relevant propagators, including
(193).

To sum up, it has been seen that looking at the standard manner of parametriz-
ing the Higgs doublet φ(x), one could already object that the isoscalar nature of
the (nonzero) weak hypercharge carried by φ(x) would rather demand φ(x) to
be so re-parametrized as to be consistently left a non-Hermitian field under any
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SU(2) gauge transformation (with no exception even for the special one defining
the standard unitary gauge). The rigorous fulfilment of such a condition has been
shown to imply a modified mass-generating mechanism, which should be merely
based on the gauge elimination of would-be-Goldstone bosons (now four in num-
ber) and should no longer require the existence of an additional (massive) real
particle like the Higgs boson.

A strict “internal” mechanism like this − with a mere “vacuum” Higgs field
involved – seems to be particularly appropriate for the whole new electroweak
formulation here proposed, within which it can further acquire fully sound
theoretical motivations. Indeed, according to the two-component model of
Section 4, the primary weakly-interacting massless fermions are to be left-handed
by their own nature, so that there may be now (beyond pure phenomenological jus-
tifications) really a compelling theoretical reason for any of them to gain one extra
helicity freedom degree on getting massive. In the revised electroweak framework,
the φ(x) isodoublet is clearly representable in two alternative manners, depending
on whether the SU(2)L⊗U(1)Y or SU(2)R⊗U(1)Ȳ covariant picture is adopted.
Recalling that the effective one-particle isospin operator is T in the former case
and −T in the latter, we may put

φ(x) = φL(x) ≡ exp

{

i

[
3∑

k=1

θk(x)Tk + η(x)

]}

φ◦ (194)

and

φ(x) = φR(x) ≡ exp

{

i

[
3∑

k=1

−θk(x)(−Tk) + η(x)

]}

φ◦, (195)

respectively. According to the former picture, the weak isospin acting on φ(x) is
Tw = T, and

T w
3 φ◦ = T3 φ◦ =

(
−1

2

)
φ◦, Yφ◦ = (+1) φ◦ ; (196)

whereas, according to the latter picture, the weak isospin acting on φ(x) is Tw =
−T, and

T w
3 φ◦ = (−T3) φ◦ =

(
+1

2

)
φ◦, Ȳ φ◦ = (−1) φ◦. (197)

In the SU(2)L⊗U(1)Y picture, the coupling (188) should be replaced by

L(f)
Yukawa = 1

2

∑

fi ,f̄j

mfi f̄j
χ̄

(∓)
fi

ρ(±) χf̄j
+ H.c. (198)

(mfif̄j
= mij ) where fi, f̄j are fermion and antifermion flavor indices, respec-

tively, and where the 1
2 factor is due to the different normalizations of χ̄

(∓)
fi

and
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χf̄j
as compared with ψ̄

(∓)
iL and ψjR. In the SU(2)R⊗U(1)Ȳ picture, equivalently,

one should write

L(f)
Yukawa = 1

2

∑

f̄i ,fj

mf̄ifj
χ̄

(±)
f̄i

ρ(±) χfj
+ H.c., (199)

where the inverted superscript (±) for χ̄f̄i
(as compared with χ̄fi

) shows up
either sign of the corresponding (opposite) eigenvalue of the weak-isospin third
component. By use of the above unitarity-preserving procedure of approaching
the extended unitary gauge, both (198) and (199) can be seen to yield just the same
mass term: say,

L(f)
mass = 1

2

∑

fi ,f̄j

mfi f̄j
χ̄fi

χf̄j
+ H.c.. (200)

For a diagonal mfif̄j
matrix with eigenvalues mf , this reduces to

L(f)
mass = 1

2

∑

f

mf (χ̄f χf̄ + χ̄f̄ χf ). (201)

9. LINK BETWEEN THE WEINBERG MIXING AND THE ACTUAL
SUPERSELECTION OF ELECTRIC-CHARGE EIGENSTATES

In the framework of the massless spin- 1
2 particle model of Section 4,

whether the SU(2)L⊗U(1)Y or SU(2)R⊗U(1)Ȳ picture is being adopted, the
only conceivable scalar-charge current is the one of the whole “would-be-
Dirac” type (109), with ψ (= ψ±) being a chiral-field mixture like (76) and
Q (= qPin) behaving like a one-particle charge operator as in (110). On passing
to an [SU(2)L ⊗ U(1)Y ] ⊕ [SU(2)R ⊗ U(1)Ȳ ] unified formalism – see the end of
Section 6 – a corresponding “dressed” current can be built from (109), having an
overall structure like

ψ̄+γ µQψ+P+ + ψ̄−γ µQψ−P− (ψ− = γ 5ψ+), (202)

where P+ and P− are the Casimir operators given by (162). Of course, as long
as the two (fermion and antifermion) chiral fields χf and χf̄ are massless (so
that either ψ+ or ψ− may only be a mixture of them), both the real fermion and
the real antifermion so depicted are naturally bound to have single (and opposite)
helicity eigenvalues and are stricly prevented from looking like actual scalar-
charge eigenstates (except for the trivial case of a zero Q eigenvalue). This just
corresponds to the fact that the scalar charge Q can never turn out to be diagonal
(with nonzero eigenvalues) in the absence of mass. On the other hand, once mass
is acquired, neither ψ+ nor ψ− will be bound any more to be a chiral-field mixture;
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and so it will result that ψ+ and ψ− themselves have truly be made two (covariantly
conjugated) Q eigenfields, each with one independent, unmeasurable phase.

In such a framework, the actual existence of nonzero-scalar-charge eigen-
states is indeed a nontrivial matter, closely related to the appearance of fermion
masses. At variance with the standard approach to the electroweak model, one
now has that the Weinberg mixing looks just like an essential “superselective”
mechanism for the electric charge, which further cannot be made working without
the simultaneous generation of a mass, and the simultaneous gain of an extra he-
licity freedom degree, for the electrically charged fermion involved. By adopting
the above-seen, pure “vacuum” SSB model – with a fourth would-be-Goldstone
boson in the place of the Higgs particle – one may consistently claim, on the other
hand, just an internal origin for fermion-mass appearance, as a general effect
implied by the emerging superselective attitude of a scalar variety of charges (as
opposed to the pseudoscalar variety dominating the zero-mass primary stage).
According to these nonstandard views, the Higgs doublet (as properly recast in
terms of four would-be-Goldstone Hermitian fields) should now be thought of like
a mere, effective “vacuum” field, which must so interact as to reproduce the given
final spectrum of mass eigenstates. As is well-known, the spectrum in question
consists of strict flavor-scalar-charge (besides electric-charge) eigenstates, with
definite eigenvalues for all of the flavor scalar charges. Hence, in full agreement
with what is apparently suggested by a phenomenological approach, just the com-
bined internal contributions of both the electric charge and the flavor scalar charges
should ultimately underlie such a spectrum, with no more room for the conjecture
of some “external” real agent at the origin of it (note that strictly speaking, a special
contribution, the same for all quarks, should also come from the superselection of
color eigenstates as opposed to anticolor ones).

In general, once a physical pair of mutually conjugated scalar-charge eigen-
fields is superselected (at the price of giving mass to both the particle and the
antiparticle), one gets

ψ+ (ψ̄+) → ψf (ψ̄f ), ψ− (ψ̄−) → ψf̄ (ψ̄f̄ ) (203)

as well as, recalling Eqs. (164) and (165),

P+ → |f 〉〈f |, P− → | f̄ 〉〈 f̄ | ; (204)

and by substituting (110), the current (202) is at last turned into (62), with Q as
given by (110) being made just a representation of the scalar-charge operator (61).
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10. P AND C BREAKINGS DUE TO THE WEINBERG MIXING,
AND P-INVARIANCE SURVIVAL FOR THE
CHARGED-CURRENT COUPLINGS IN
THE PRESENCE OF CP VIOLATION

Herein the fermion-mass Lagrangian term is given by the (diagonalized)
general formula (201), equally valid for both SU(2)L⊗U(1)Y and SU(2)R⊗U(1)Ȳ
alternative pictures. Any chiral-field pair χf , χf̄ appearing in (201) is no longer
strictly a pair of mass eigenfields as in the zero-mass case. Indeed, it is the two
corresponding linear combinations defined in (76) that have been made mass
eigenfields (with opposite eingenvalues): if (201) is rewritten in terms of each
actual mass eigenfield ψf and/or ψf̄ (= γ 5ψf ) as given by (25), it then becomes

L(f)
mass =

1

2

∑

f

[
mf ψ̄f ψf + (−mf )ψ̄f̄ ψf̄

]=
∑

f

mf ψ̄f ψf =
∑

f

(−mf )ψ̄f̄ ψf̄

(205)
or, by use of an [SU(2)L ⊗ U(1)Y ] ⊕ [SU(2)R ⊗ U(1)Ȳ ] unified formalism,

L(f)
mass =

∑

f

[
mf ψ̄f ψf P+ + (−mf ) ψ̄f̄ ψf̄ P−

]
, (206)

where it may directly be put P+ = |f 〉〈f | and P− = | f̄ 〉〈 f̄ |. On the other hand,
despite the appearance of fermion masses and the superselection of scalar-charge
eigenstates, a surviving presence of chiral fields will still be dynamically experi-
enced in weak-isospin couplings. This, by an inspection of (117), may consistently
be related to the fact that the SU(2)L generator, TL, in the SU(2)L⊗U(1)Y picture,
as well as the SU(2)R generator, TR, in the SU(2)R⊗U(1)Ȳ picture, are them-
selves able to keep each χf (fermion) and χf̄ (antifermion) field superselected,
respectively.

Like the starting scheme (without masses), the final scheme (with masses)
will include two equivalent covariant varieties of gauge couplings, which may only
alternately be utilized, according to whether the SU(2)L⊗U(1)Y or SU(2)R⊗U(1)Ȳ
symmetry group is being adopted. Yet, strictly speaking, these two available elec-
troweak formulations should together be taken as mere complementary aspects of a
“whole” formulation symmetrically dealing with fermions as well as antifermions.
This is because, in a rigorous one-particle covariant approach, the electromag-
netic U(1) gauge group has now a generator being a charge operator of the
type

Q(q) = q (P+ − P−) (207)

(q and −q generally denoting the given, particle and antiparticle, electric-charge
eigenvalues involved), so that it can only be a subgroup of the overall, left–right
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symmetric group (169), and not of either single group SU(2)L⊗U(1)Y or
SU(2)R⊗U(1)Ȳ .

The general electroweak-gauge-Lagrangian pattern (the IVB electromagnetic
coupling sector apart) can just be obtained by recasting (170) in terms of the final
neutral spin-1 mass eigenfields given by (186). It now consists of a “whole” L + R
Lagrangian of the type

Lint(L+R) = [
Lw

int(L) − q ψ̄f γ µψf Aµ

]
P+

+ [
Lw

int(R) − (−q) ψ̄f̄ γ µψf̄ Aµ

]
P−, (208)

where (by a direct use of a manifestly covariant form) one has

Lw
int(L) = −2−3/2g

(
D̄Lγ µ T w+DL Wµ + D̄Lγ µ T w−DL W †

µ

)

−
( g

2 cos θ
D̄Lγ µ T w

3 DL − q tan θ ψ̄f γ µψf

)
Zµ (209)

Lw
int(R) = −2−3/2g (D̄Rγ µ T w+DR Wµ + D̄Rγ µ T w−DR W †

µ)

−
[ g

2 cos θ
D̄Rγ µ T w

3 DR − (−q) tan θ ψ̄f̄ γ µψf̄

]
Zµ (210)

(θ = θW ; T w± = T w
1 ± i T w

2 ;
√

2Wµ = W1µ − i W2µ) and where, according to
the formalism of Secs. 2, 5 and at variance with the V − A theory, either DL or
DR is left a strict chiral-field isodoublet, with the fields normalized as in (24).
Another nonstandard covariant feature of (208) comes from (115): now the three
components T w±, T w

3 of the one-particle weak isospin Tw are also individually
defined as “pseudoscalar-charge operators.” Note that the original explicit presence
of (right-handed) antifermion fields in the P+ sector, as well as of (left-handed)
fermion fields in the P− sector, have automatically disappeared as a consequence
of the Weinberg mixing: the former sector now provides a genuine (positive- and
negative-energy) fermion dynamical picture, just in terms of ψf and χf fields,
while the latter a genuine (positive- and negative-energy) antifermion dynamical
picture, just in terms of ψf̄ and χf̄ fields (“covariantly conjugated” to the ψf and
χf ones). Formula (208) includes the “whole” fermion-plus-antifermion covariant
electromagnetic gauge coupling

−Q(q) (ψ̄f γ µψf P+ + ψ̄f̄ γ µψf̄ P−) Aµ, (211)

which merges the two equivalent couplings in turn available according to the
picture chosen. In (211), the electric charge (operator) Q(q), given by (207), is
more specifically expressible – with the help of Eqs. (133) and (134), and of
Eqs. (145) and (146) – as

Q = [(t3L + y/2) |e| ]P+ + [(t3R + ȳ/2) |e| ]P−. (212)
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Also, note that actually, ψ̄f γ µψf = ψ̄f̄ γ µψf̄ , (with ψf̄ = γ 5ψf and ψ̄f̄ =
−ψ̄f γ 5). This, of course, is quite admissible on the basis of what has been pointed
out in Sections 2, 3. The fact is that the two available, fermionic and antifermionic,
pictures above are self-contained and mutually exclusive (as is formally ensured
by the presence of their respective Casimir operators P+ and P−). In the over-
all framework embodying them both, one has that every fermion field ψf or χf

(belonging to the former picture) and corresponding antifermion field ψf̄ or χf̄

(belonging to the latter picture) are covariantly conjugated to each other and share
identical “particle” annihilation operators as well as identical “hole” creation op-
erators (with no “particle” ⇀↽ “hole” interchange on passing from one to the other
picture): what just happens is that the former description associates “particle”
with fermion (and “hole” with antifermion) while the latter associates “particle”
with antifermion (and “hole” with fermion). Quite a similar remark applies to the
two charged boson fields Wµ and W †

µ, which do not appear interchanged, either,
on passing from one to the other picture: the point is merely that Wµ (W †

µ) will
annihilate a “particle” (“antiparticle”) coinciding with W+ (W−) in the former
picture, and with W− (W+) in the latter.

The basic new peculiar feature common to all final charged-current couplings
(in both lepton and quark sectors) is that they do naturally reproduce the “maximal
parity-violation” effect, in a way, i.e., neither being ad hoc imposed nor involving
any real failure of P symmetry itself. This holds even in the presence of a (stan-
dardly parametrized) CP violation (Kobayashi and Maskawa, 1973), thanks to the
fact that according to (25), “chiral fields” (with fixed, and opposite, chiralities for
fermions and antifermions) are now regular fields just like Dirac ones, and the
parity matrix, γ 0, covariantly applies to them just the same as to Dirac fields. Since
herein the whole CP operation turns out still to be defined as in the V − A formal-
ism, it then follows, by applying the CPT theorem, that the observed CP failure can
no longer be said to affect the symmetry under CT (T being the ordinary time re-
versal): rather, it would now amount to a breaking of both C and T individual sym-
metries, but not of CT symmetry, and its origin should now be simply ascribed to
those flavor scalar charges involved in the quark-family triplication. In this regard,
note that such a view on the question of the origin of CP violation is fully consis-
tent with the well-known fact that no CP violation can in principle occur without
the existence of at least three quark families. Within the leptonic sector (where
mass eigenstates may be assumed to coincide with gauge eigenstates) the charged-
current couplings are now consistently obeying C symmetry, too: this may clearly
happen owing to their actual dependence on no longer fictitious chiral fields, which
also under C (and not only under P ) are transformed just like Dirac fields. On the
contrary, neither P nor C symmetry is still generally obeyed by the final (lepton and
quark) neutral-current weak couplings, even though as a mere result of the inter-
ference between scalar- and pseudoscalar-charge dynamics that is now induced by
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the Weinberg mixing: for either an electrically charged lepton or a quark, the final
neutral weak current (as taken in its antisymmetrized version) is here made up of an
axial-vector (i.e., the original weak-isospin neutral current) plus a vector (i.e., the
electromagnetic current) which are (the former) left unchanged and (the latter) re-
versed by C. Symmetry under CP can obviously be ensured for such couplings, by
setting

CPZµ(xν) P †C† = Zµ(xν). (213)

Since Aµ, in its turn, is a vector inverted by C, one thus finds – also in view of
(156) – that the gauge-field transformation (186) can be covariant only under CP
(and not under P and C separately).

A few words should further be spent, finally, as to the strictly internal, new
operation CcovPin, with Ccov defined by Eqs. (80) and (164), and Pin defined by
Eqs. (79) and (165). It stands herein for the total “covariant charge-conjugation”
operation, which applies to both scalar and pseudoscalar charge varieties (to-
gether involved in the new electroweak model) and interchanges fermions and
antifermions as globally taken in their own dual – either “Dirac” or “chiral” – na-
ture. By the way, note that Ccov alone acts on the electromagnetic sector (211) just
the same as according to the prescription (65). The pure gauge Lagrangian pattern
(208) is still invariant under CcovPin as before the Weinberg mixing (recall that Aµ

and Zµ are linear combinations of two gauge fields that are both supposed to be left
unchanged by CcovPin): the effect of CcovPin will just be to transform all the single
(charged current, neutral current, and electromagnetic) P+ and P− subsectors into
each other. Such a symmetry appears to be lost (at least, for the charged-current
subsectors) in the case of the quark-family triplication, once an explicit reference
is made to the actual quark mass eigenfields. Therein the Kobayashi–Maskawa
matrix that should mix the three replicas of the P− (antiquark) sector is clearly the
complex conjugate of the one already mixing the three replicas of the P+ (quark)
sector; and this cannot surely be obtained by applying a mere linear operation (like
CcovPin) to the P+ sector.

11. ON THE RECOVERED P AND C SYMMETRIES
IN THE CP-CONSERVING VARIETY OF THE
CHARGED-CURRENT WEAK COUPLINGS

For a full understanding of the symmetry retrievals in the charged-current
sector of (208), the basic point to bear in mind is that the weak-isospin compo-
nents are herein pseudoscalar quantities, which furthermore anticommute with any
scalar charges. As an immediate result, weak-isospin eigenstates are now strictly
predicted to behave as if carrying scalar charges definite only in magnitude and
maximally indefinite in sign. Such a property can at most allow a dual – either
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“Dirac” or “chiral” – behavior of quarks and electrically charged leptons, which
is just evidenced by the alternate presence of Dirac fields (of the ψf type) and
true chiral fields (of the χf type) in most of the final couplings: while a “Dirac”
fermion clearly looks like a pure scalar-charge eigenstate, which may be said to
have a maximally uncertain “chirality” and a certain (relative) intrinsic parity, a
“chiral” fermion looks instead like a pure pseudoscalar-charge eigenstate, which
may conversely be said to have a certain “chirality” and a maximally uncertain
(relative) intrinsic parity. Of course, a dual nature (still due to the coexistence
of two anticommuting, pseudoscalar and scalar, charge varieties) should also be
acknowledged to the charged gauge bosons W±, as they are similarly predicted to
behave either like pure pseudoscalar-charge eigenstates, in the weak couplings, or
like pure scalar-charge eigenstates, in the electromagnetic couplings.

Within this general framework, let a “chiral” particle be more widely
standing for any (whether fermion or boson) particle on its appearing as a
pseudoscalar-charge eigenstate. Then, the recovered P -invariance property in ev-
ery charged-current weak coupling will simply mean that the mere space-inverted
image of a “chiral” particle does already represent a “chiral” antiparticle, with
no need of further applying a charge-conjugation operation. It should however be
emphasized that such a sort of P symmetry, like the more familiar one experienced
in scalar-charge dynamics, cannot in general correspond but to a partial view of
the particle nature, even though that view itself, once it apparently enters into play
as the only allowable one, may just be taken as effectively representing the particle
in toto. For instance, let χf (xµ) be the field of a (positive and negative energy)
“chiral” fermion which is involved in a charged-current weak coupling belong-
ing to the P+ sector of (208), and let χf̄ (xµ) be the pure chirality-conjugate of
χf (xµ), associated with the corresponding (positive and negative energy) “chiral”
antifermion in the P− sector. One and the same complete standard Fock space,
F◦, will be alternately available for the fermion and the antifermion in question
(depending on whether the P+ or P− picture is being adopted). Under space
inversion, χf (xµ) is transformed as follows:

χf (xµ) −→ χ
(P )
f (xµ) = P †

ex χf̄ (xµ)Pex = γ 0χf (xµ) (214)

(P = PexPin = PinPex), and quite an analogous transformation holds for χf̄ (xµ).
According to (214), P has not only the usual “external” action in F◦, but also
an “internal” one (of chirality inversion, χf → χf̄ ) in the two-dimensional space

spanned by the field pair (χf , χf̄ ) ; and the P -transformed field, P
†
ex χf̄ (xµ)Pex,

correspondingly describes the space-inverted kinematical state of a P -transformed
“chiral” fermion just coinciding with the “chiral” antifermion. Note, on the other
hand, that if P is applied to the “Dirac”-fermion field ψf (xµ) = 2−1/2[χf (xµ) +
χf̄ (xµ)], dual to χf (xµ), then the whole action of P is automatically reduced to
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the pure “external” one:

ψf (xµ) −→ ψ
(P )
f (xµ) = ψ

(Pex)
f (xµ) = γ 0ψf (xµ). (215)

So, the P -invariance property for the charged-current couplings in the P+
sector of (208) should typically signify that they (which are referred to positive-
and negative-energy fermions) can just as well work as couplings being referred
to positive- and negative-energy antifermions in the space-inverted frame. This
should also imply an interchange of the original physical roles assigned to Wµ

and W †
µ : if the gauge field Wµ (W †

µ) is assumed to annihilate an intermediate
vector boson W+ (W−) then its P -counterpart should vice versa be assumed to
annihilate an intermediate vector boson W− (W+). Under such special dynamical
circumstances, P alone may be said to have the additional effect of a “covariant
charge-conjugation” operation just simulating a real change of a particle into an
antiparticle. In more specific terms, since no “particle” ⇀↽ “hole” conjugation is in-
duced by P on fermion fields, what is truly involved is the passage from a complete
(“fermionic”) picture where “particle” = fermion (and “hole” = antifermion) to a
complete (“antifermionic”) picture where “particle” = antifermion (and “hole” =
fermion). Of course, except for the zero-mass case, the mere parity P cannot really
be taken as a true particle ⇀↽ antiparticle conjugation operation: for example, a
“Dirac” particle (typically behaving like a pure scalar-charge eigenstate) is not
turned at all by P into a “Dirac” antiparticle. The same can be said for C, but in a
reverse manner: C has, on “chiral” particles, no longer the effect of truly changing
a particle into an antiparticle, even though such an effect is still regularly present
when C is applied to “Dirac” particles. This can be inferred from the fact that C

now yields, e.g.,

χf −→ χ
(C)
f = C

†
st χf̄ Cst = Cχ̃

†
f (216)

besides

ψf −→ ψ
(C)
f = ψ

(Cst)
f = Cψ̃

†
f (217)

(Cst denoting the C operation as just defined in F◦, and C being here used to
denote the C-matrix as well). The point is that C, like P , has also an action (of
chirality inversion) in the (χf , χf̄ ) space (i.e., C = CstPin = PinCst): the net effect
of C will be thus to transform a “chiral” fermion taken as a “particle” (in a picture
where “particle” = fermion and “hole” = antifermion) into itself taken as a “hole”
(in a new picture where “particle” = antifermion and “hole” = fermion) and to
interchange not only Wµ and W †

µ, but also their assigned roles of annihilation
operators for W+ and W− bosons. Identical conclusions can clearly be drawn,
even when reference is made to the alternative (antifermionic) charged-current
couplings in the P− sector of (208). It is worth, nevertheless, stressing the fact
that if the new electroweak model is globally taken in its pseudoscalar- plus
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scalar-charge dynamical contributions, then only CP as a whole is left a true
particle ⇀↽ antiparticle conjugation operation.

For a more straightforward evaluation of both P and C individual effects
on “chiral”-particle systems, it turns out convenient to make an explicit use of
a normally ordered formalism. First it should be borne in mind that generally,
given a gauge coupling term like qchχ̄bγ

µχa Wµ, with qch being a (pseudoscalar)
charge eigenvalue which under P (or Pin) is taken into −qch, the new way (33) of
applying the C-matrix enables one to write

qch[(: χ̄bγ
µχaWµ :) + H.c.] = qch

2

[(
χ̄bγ

µχa − χ̄ (C)
a γ µχ

(C)
b

)
Wµ + H.c.

]
(218)

or (after appropriate rearrangements involving also the Hermitian conjugate term)

qch[(: χ̄bγ
µχaWµ :) + H.c.]= qch

2

[(
χ̄bγ

µχaWµ − χ̄
(C)
b γ µχ (C)

a W †
µ

) + H.c.
]
.

(219)
A glance at the expression within square brackets in (219) then shows that

the action of the (covariant) transformation

Pin :

{
χa → χā, χ̄b → χ̄b̄, χ (C)

a → χ
(C)
ā , χ̄

(C)
b → χ̄

(C)
b̄ ,

Wµ → Wµ, W †
µ → W †

µ, qch → −qch,
(220)

with χā = [χ (C)
a ](Cst), and so on, can equally well be reproduced (via a noncovariant,

effective approach) by making instead the substitutions
{

χa → χ (Cst)
a , χ̄b → χ̄

(Cst)
b , χ (C)

a → χ (C)(Cst)
a , χ̄

(C)
b → χ̄

(C)(Cst)
b ,

Wµ ⇀↽ W †
µ.

(221)

Such an approach – which has the advantage of always dealing (as usual)
with one and the same “particle”–“antiparticle” formal picture – leads indeed to
the self-explaining effective equalities Pin = Cst, P = (CP)st (= CP) and C = 1.
Of course, these equalities may actually be taken into account only if the gauge
eigenfields χa,b are also mass eigenfields (as it occurs for the CP-conserving sector
of the charged-current weak couplings).

12. CONCLUDING REMARKS

A new version of the whole electroweak theory has been here worked out,
which naturally embodies (regardless of experience) the so-called “maximally P -
violating” phenomenology and is furthermore able to provide a basic explanation
of it in full observance of mirror symmetry. The formalism underlying the proposed
scheme is a covariant fermion–antifermion generalization of the usual relativistic
quantum field formalism for massive spin- 1

2 fermions. It strictly admits not only
Dirac fields, as eigenfields of scalar charges, but also true “chiral fields,” as
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eigenfields of pseudoscalar charges, and correspondingly supports a dual model
of a massive point fermion, characterized by the internal coexistence of two
anticommuting (scalar and pseudoscalar) charge varieties. According to such a
model, there would be two complementary and mutually exclusive – “Dirac” and
“chiral” – natures inside any single real quark and electrically charged lepton,
whose alternation should just depend on whether a pure scalar- or pseudoscalar-
charge dynamics is working (an actual interference between these two natures
would be experienced only in the neutral-current electroweak sector, as a result
both of the Weinberg mixing and of the overlapping of electromagnetic and weak
contributions). The role of pseudoscalar charges should in particular be expected
to become really crucial and predominant in the zero-mass limit: the reason is
because a simple two-component fermion theory is thus spontaneously come to, in
which a massless spin- 1

2 fermion and its antiparticle are universally remodelled as
two sheer “chiral” particles, always looking like pseudoscalar-charge eigenstates
and being the mere mirror (or helicity-conjugate) counterparts of each other. This
theory – which naturally deals with an only left-handed massless fermion and an
only right-handed massless antifermion without breaking parity symmetry – is just
the one underlying the new, both P - and C-invariant, zero-mass primary version of
the electroweak scheme. As an immediate physical consequence, one now has that
a massless spin- 1

2 fermion may at most bear scalar (additional) charges maximally
uncertain in sign, and that only by acquiring a mass, and by gaining an extra helicity
freedom degree, may it also be enabled to appear as a “Dirac” particle (with sharp
scalar-charge eigenvalues). A strict “internal” motivation is thus found for the
appearance of fermion masses, which furthermore requires a modified mechanism
of fermion-mass generation: what should now be involved is the simple absorption
of a (fourth) would-be-Goldstone boson (just needed to counterbalance the actual
gain, for the fermion, of the originally missing helicity freedom degree). Another
basic feature that deserves to be mentioned is the fact that the recovered P -
invariance property of the pure weak-isospin gauge couplings is merely “hidden”
by the Weinberg mixing and still holds in the charged-current sector even in the
presence of a (standardly parametrized) CP violation: the experienced CP failure
may now be reduced to a pure C failure, to which there should correspond a T

(i.e., time reversal) violation being such that CT itself, and not only CPT, is left
a symmetry operation.

In short, as compared with the standard version, the proposed electroweak
scheme comes to the following main new results:

(1) It is able to predict the “maximal P -violation” effect without the help of
any ad hoc prescription and to replace the (phenomenological) Dirac-field
“V − A” formalism with a natural, theoretically well-grounded, chiral-
field “V ” formalism.
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(2) It can also give an answer as to the origin of the “maximally P -violating”
phenomenology, on the basis of a general, pure theoretic approach (in
terms of two anticommuting, scalar and pseudoscalar, charge varieties)
which paradoxically recovers both P and C individual symmetries.

(3) It rigorously establishes, beyond experimental data, that no right-handed
massless neutrinos (left-handed massless antineutrinos) may ever exist.

(4) It converts the (ad-hoc conjectured) standard “right-handed fermion” isos-
inglets into (natural) antifermion SU(2)L isosinglets, thus resolving the
usual apparent final inconsistency due to the fact that two mere “chiral
projections” of one and the same (Dirac) massive fermion field would find
themselves belonging to two different weak-isospin representations.

(5) It provides a deep theoretical motivation for the appearance of fermion
masses, as just a step absolutely necessary to obtain superselected scalar-
charge (and primarily, electric-charge) eigenstates.

(6) It demands, for either an electrically charged lepton or a quark, a
mass-generating mechanism being just like the one for an intermediate
vector boson and no longer involving the Higgs particle (this is clearly
related to the fact that even a massless spin- 1

2 fermion, and not only a
massless spin-1 boson, has now to gain an extra helicity freedom degree
in order to be made massive).

The pure “vacuum” Higgs mechanism here adopted (involving four
would-be-Goldstone bosons and nothing else) has been shown not to spoil
the renormalizability and unitarity of the theory; it has also been proved
to be a self-consistent mechanism, in the sense that the natural, strict
absence of any self-coupling term inside the new Higgs Lagrangian (180)
is by itself able to ensure the inapplicability of the well-known standard
argument (Cheng and Li, 1984) against a number of more than three
would-be-Goldstone bosons in all.
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